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Live joyfully with the wife whom thou lovest all the

days of the life of thy vanity, which He hath given

thee under the sun, all the days of thy vanity: for that

is thy portion in this life, and in thy labor which thou

takest under the sun.

Ecclesiastes 9:9
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Preface to the Third Edition

It is a truism (cliche?) that microcomputers have become more powerful on an

almost exponential curve since their advent more than 30 years ago. Molecular

orbital calculations that I ran on a supercomputer a decade ago now run on a fast

desktop microcomputer available at a modest price in any popular electronics store

or by mail order catalog. With this has come a comparable increase in software

sophistication.

There is a splendid democratization implied by mass-market computers. One

does not have to work at one of the world’s select universities or research institutes

to do world class research. Your research equipment now consists of an off-the-

shelf microcomputer and your imagination.

At the first edition of this book, in 1990, I made the extravigant claim that ‘‘a

quite respectable academic program in chemical microcomputing can be started for

about $1000 per student’’. The degree of difficulty of the problems we solve has

increased immeasurably since then but the price of starting a good teaching lab is

probably about half of what it was. To equip a workstation for two students, one

needs a microcomputer connected to the internet, a BASIC interpreter and a

beginner’s bundle of freeware which should include the utility programs suggested

with this book, a Huckel Molecular Orbital program, TINKER, MOPAC, and

GAMESS.

There are 42 Computer Projects included in this text. Several of the Computer

Projects connect with the research literature and lead to extensions suitable for

undergraduate or MS thesis projects. All of the computer projects in this book have

been successfully run by the author. Unfortunately, we still live in an era of system

incompatibility. The instructor using these projects in a teaching laboratory is urged

xv



to run them first to sort out any system specific difficulties. In this, the projects here

are no different from any undergraduate experiment; it is a foolish instructor indeed

who tries to teach from untested material.

The author wishes to acknowledge the unfailing help and constructive criticism

of Frank Mc Lafferty, the computer tips of Nikita Matsunaga and Xeru Li. Some of

the research which gave rise to Computer Projects in the latter half of the book were

carried out under a grant of computer time from the National Science Foundation

through the National Center for Supercomputing Applications both of which are

gratefully acknowledged.

Donald W. Rogers

Greenwich Village, NY

July 2003
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Preface to the Second Edition

A second edition always needs an excuse, particularly if it follows hard upon the

first. I take the obvious one: a lot has happened in microcomputational chemistry in

the last five years. Faster machines and better software have brought more than

convenience; there are projects in this book that we simply could not do at the time

of the first edition.

Along with the obligatory correction of errors in the first edition, this one has

five new computer projects (two in high-level ab initio calculations), and 49 new

problems, mostly advanced. Large parts of Chapters 9 and 10 have been rewritten,

more detailed instructions are given in many of the computer projects, and several

new illustrations have been added, or old ones have been redrawn for clarity. The

BASIC programs on the diskette included here have been translated into ASCII

code to improve portability, and each is written out at the end of the chapter in

which it is introduced. Several illustrative input and output files for Huckel, self-

consistent field, molecular mechanics, ab initio, and semiempirical procedures are

also on the disk, along with an answer section for problems and computer projects.

One thing has not changed. By shopping among the software sources at the end

of this book, and clipping popular computer magazine advertisements, the prudent

instructor can still equip his or her lab at a starting investment of about $2000 per

workstation of two students each.

xvii





Preface to the First Edition

This book is an introduction to computational chemistry, molecular mechanics, and

molecular orbital calculations, using a personal microcomputer. No special com-

putational skills are assumed of the reader aside from the ability to read and write a

simple program in BASIC. No mathematical training beyond calculus is assumed.

A few elements of matrix algebra are introduced in Chapter 3 and used throughout.

The treatment is at the upperclass undergraduate or beginning graduate level.

Considerable introductory material and material on computational methods are

given so as to make the book suitable for self-study by professionals outside

the classroom. An effort has been made to avoid logical gaps so that the

presentation can be understood without the aid of an instructor. Forty-six self-

contained computer projects are included.

The book divides itself quite naturally into two parts: The first six chapters are

on general scientific computing applications and the last seven chapters are devoted

to molecular orbital calculations, molecular mechanics, and molecular graphics.

The reader who wishes only a tool box of computational methods will find it in the

first part. Those skilled in numerical methods might read only the second. The book

is intended, however, as an entity, with many connections between the two parts,

showing how chapters on molecular orbital theory depend on computational

techniques developed earlier.

Use of special or expensive microcomputers has been avoided. All programs

presented have been run on a 8086-based machine with 640 K memory and a math

coprocessor. A quite respectable academic program in chemical microcomputing

can be started for about $1000 per student. The individual or school with more

expensive hardware will find that the programs described here run faster and that

xix



more visually pleasing graphics can be produced, but that the results and principles

involved are the same. Gains in computing speed and convenience will be made as

the technology advances. Even now, run times on an 80386-based machine

approach those of a heavily used, time-shared mainframe.

Sources for all program packages used in the book are given in an appendix. All

of the early programs (Chapters 1 through 7) were written by the author and are

available on a single diskette included with the book. Programs HMO and SCF

were adapted and modified by the author from programs in FORTRAN II by

Greenwood (Computational Methods for Quantum Organic Chemistry, Wiley

Interscience, New York, 1972). The more elaborate programs in Chapters 10

through 13 are available at moderate price from Quantum Chemistry Program

Exchange, Serena Software, Cambridge Analytical Laboratories and other software

sources [see Appendix].

I wish to thank Dr. A. Greenberg of Rutgers University, Dr. S. Topiol of Burlex

Industries, and Dr. A. Zavitsas of Long Island University for reading the entire

manuscript and offering many helpful comments and criticisms. I wish to acknowl-

edge Long Island University for support of this work through a grant of released

time and the National Science Foundation for microcomputers bought under grant

#CSI 870827.

Several chapters in this book are based on articles that appeared in American

Laboratory from 1981 to 1988. I wish to acknowledge my coauthors of these

papers, F. J. McLafferty, W. Gratzer, and B. P. Angelis. I wish to thank the editors of

American Laboratory, especially Brian Howard, for permission to quote extensively

from those articles.
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C H A P T E R

1
Iterative Methods

Some things are simple but hard to do.

—A. Einstein

Most of the problems in this book are simple. Many of the methods used have been

known for decades or for centuries. At the machine level, individual steps in the

procedures are at the grade school level of sophistication, like adding two numbers

or comparing two numbers to see which is larger. What makes them hard is that

there are very many steps, perhaps many millions. The computer, even the once

‘‘lowly’’ microcomputer, provides an entry into a new scientific world because of

its incredible speed. We are now in the enviable position of being able to arrive at

practical solutions to problems that we could once only imagine.

Iterative Methods

One of the most important methods of modern computation is solution by iteration.

The method has been known for a very long time but has come into widespread use

only with the modern computer. Normally, one uses iterative methods when

ordinary analytical mathematical methods fail or are too time-consuming to be

Computational Chemistry Using the PC, Third Edition, by Donald W. Rogers
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practical. Even relatively simple mathematical procedures may be time-consuming

because of extensive algebraic manipulation.

A common iterative procedure is to solve the problem of interest by repeated

calculations that do not initially give the correct answer but get closer to it as the

calculation is repeated, perhaps many times. The approximate solution is said to

converge on the correct solution. Although no human would be willing to repeat an

iterative calculation thousands of times to converge on the right answer, the

computer does, and, because of its speed, it often arrives at the answer in a

reasonable amount of time.

An Iterative Algorithm

The first illustrative problem comes from quantum mechanics. An equation in

radiation density can be set up but not solved by conventional means. We shall

guess a solution, substitute it into the equation, and apply a test to see whether

the guess was right. Of course it isn’t on the first try, but a second guess can be

made and tested to see whether it is closer to the solution than the first. An iterative

routine can be set up to carry out very many guesses in a methodical way

until the test indicates that the solution has been approximated within some narrow

limit.

Several questions present themselves immediately: How good does the initial

guess have to be? How do we know that the procedure leads to better guesses, not

worse? How many steps (how long) will the procedure take? How do we know

when to stop? These questions and others like them will play an important role in

this book. You will not be surprised to learn that answers to questions like these

vary from one problem to another and cannot be set down once and for all. Let us

start with a famous problem in quantum mechanics: blackbody radiation.

Blackbody Radiation

We can sample the energy density of radiation rðn; TÞ within a chamber at a fixed

temperature T (essentially an oven or furnace) by opening a tiny transparent

window in the chamber wall so as to let a little radiation out. The amount of

radiation sampled must be very small so as not to disturb the equilibrium condition

inside the chamber. When this is done at many different frequencies n, the

blackbody spectrum is obtained. When the temperature is changed, the area under

the spectral curve is greater or smaller and the curve is displaced on the frequency

axis but its shape remains essentially the same. The chamber is called a blackbody

because, from the point of view of an observer within the chamber, radiation lost

through the aperture to the universe is perfectly absorbed; the probability of a

photon finding its way from the universe back through the aperture into the chamber

is zero.

2 COMPUTATIONAL CHEMISTRY USING THE PC



Radiation Density

If we think in terms of the particulate nature of light (wave-particle duality), the

number of particles of light or other electromagnetic radiation (photons) in a unit of

frequency space constitutes a number density. The blackbody radiation curve in

Fig. 1-1, a plot of radiation energy density r on the vertical axis as a function of

frequency n on the horizontal axis, is essentially a plot of the number densities of

light particles in small intervals of frequency space.

We are using the term space as defined by one or more coordinates that are not

necessarily the x, y, z Cartesian coordinates of space as it is ordinarily defined. We

shall refer to 1-space, 2-space, etc. where the number of dimensions of the space is

the number of coordinates, possibly an n-space for a many dimensional space.

The r and n axes are the coordinates of the density–frequency space, which is a

2-space.

Radiation energy density is a function of both frequency and temperature r(n,T)
so that the single curve in Fig. 1-1 implies one and only one temperature. Because

frequency n times wavelength l is the velocity of light c ¼ nl ¼ 2:998� 108 m s�1

(a constant), an equivalent functional relationship exists between energy density

and wavelength. The energy density function can be graphed in a different but

equivalent form r(l,T). The intensity I of electromagnetic radiation within any

narrow frequency (or wavelength) interval is directly proportional to the number

density of photons. It is also directly proportional to the power output of a light

sensor or photomultiplier; hence both I and r are measurable quantities. Whenever

one plots some function of radiation intensity I vs. n or l, the resulting curve is

called a spectrum.

Frequency

E
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y 
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Figure 1-1 The Blackbody Radiation Spectrum. The short curve on the left is a Rayleigh

function of frequency.
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Wien’s Law

In the late nineteenth century, Wien analyzed experimental data on blackbody

radiation and found that the maximum of the blackbody radiation spectrum lmax

shifts with the temperature according to the equation

lmaxT ¼ 2:90� 10�3 mK ð1-1Þ
where l is in meters and T is the temperature in kelvins.

The Planck Radiation Law

As Lord Rayleigh pointed out, the classical expression for radiation

rðn; TÞdn ¼ 8pkBT=c3
� �

n2dn ð1-2Þ

where kB is Boltzmann’s constant and c is the speed of light, must fail to express the

blackbody radiation spectrum because r ¼ const: � n2 is a segment of a parabola

open upward (the short curve to the left in Fig. 1-1) and does not have a relative

maximum as required by the experimental data. In late 1900, Max Planck presented

the equation

rðn; TÞdn ¼ 8phn=c3
� �

n2
dn

ehn=kBT � 1
ð1-3Þ

where the units of rðn; TÞ are joules per cubic meter, as appropriate to an energy in

joules per unit volume and h ¼ 6:626� 10�34 J s (joule seconds) is a new constant,

now called Planck’s constant. This equation expressed in terms of wavelength l is

rðl; TÞ dl ¼ 8phc=l5
� � dl

ehc=lkBT � 1
ð1-4Þ

By setting dr=dl ¼ 0, one can differentiate Eq. (1-4) and show that the equation

e�x þ x

5
¼ 1 ð1-5Þ

holds at the maximum of Fig. 1-1 where

x ¼ hc

lkBT
ð1-6Þ

Exercise 1-1

Given that c ¼ nl, show that Eqs. (1-3) and 1-4) are equivalent.

Exercise 1-2

Obtain Eq. (1-5) from Eq. (1-4).
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COMPUTER PROJECT 1-1
�� Wien’s Law

The first computer project is devoted to solving Eq. (1-5) for x iteratively. When

x has been determined, the remaining constants can be substituted into

lT ¼ hc

kBx
ð1-7Þ

where h is Planck’s constant, c is the velocity of light in a vacuum, 2:998�
108 m s�1, and kB ¼ 1:381� 10�23 J K�1 is the Boltzmann constant. The result is a

test of agreement between Planck’s theoretical quantum law and Wien’s displace-

ment law [Eq. 1-1], which comes from experimental data.

Procedure. One approach to the problem is to select a value for x that is obviously

too small and to increment it iteratively until the equation is satisfied. This is the

method of program WIEN, where the initial value of x is taken as 1 (clearly,

e�1 þ 1
5
< 1 as you can show with a hand calculator).

Program

PRINT ‘‘Program QWIEN’’

x = 1

10 x = xþ.1

a = EXP(-x)þ (x / 5)

IF (a �1) < 0 THEN 10

PRINT a, x

END

In Program QWIEN (written in QBASIC, Appendix A), x is initialized at 1 and

incremented by 0.1 in line 3, which is given the statement number 10 for future

reference. Be careful to differentiate between a statement number like 10 x ¼ xþ .1

and the product 10 times x which is 10*x. A number a is calculated for x ¼ 1:1 that

is obviously too small so (a� 1) is less than 0 and the IF statement in line 5 sends

control back to the statement numbered 10, which increments x by 0.1 again. This

continues until (a� 1) � 0, whereupon control exits from the loop and prints the

result for a and x.

There are, of course, many variations that can be written in place of Program

QWIEN. You are urged to try as many as you can. Some suggestions are as follows:

a. Vary the size of the increment in x in program statement 10. Tabulate the

increment size, the computed result for x, and the calculated Wien constant.

Comment on the relationship among the quantities tabulated.

b. Change Program QWIEN so that the second term on the right of the line below

statement 10 is x instead of x=5. Solve for this new equation. Change the line

below statement 10 so that the second term on the left is x=2. Repeat with x=3,
x=4, etc. Tabulate the values of x and the values of the denominator. Is x a

sensitive function of the denominator in the second term of Program WIEN?

ITERATIVE METHODS 5



c. Devise and discuss a scheme for more efficient convergence. For example,

some scheme that uses large increments for x when x is far away from

convergence and small values for the increment in x when x is near its true

value would be more efficient than the preceding schemes. How, in more detail,

could this be done? Try coding and running your scheme.

d. Another coding scheme can be used in True BASIC (Appendix A)

Program

PRINT ‘‘Program TWIEN’’

let X¼ 1

do

let X¼ Xþ .1

let A¼ exp(-X)þ X / 5

loop until (A� 1) > 0

PRINT A, X

END

The program contains a ‘‘do loop’’ that iterates the statements within the loop until

the condition (A� 1)< 0 is true. Try moving the ‘‘do’’ statement around in the

program to see what changes in the output. Explain. If you encounter an ‘‘infinite

loop,’’ True BASIC has a STOP statement to get you out.

It is good practice to translate programs in one BASIC (QBASIC or True
BASIC) to programs in the other if you have both interpreters. Note that the

statement X¼Xþ .1 in both programs makes no sense algebraically, but in BASIC

it means, ‘‘take the number in memory register X, add 0.1 to it and store the result

back in register X.’’ If you are not familiar with coding in BASIC, an hour or so

with an instruction manual should suffice for the simple programs used in the first

half of this book. By all means, look at the programs on the Wiley website.

COMPUTER PROJECT 1-2
�� Roots of the Secular Determinant

Later in this book, we shall need to find the roots of the secular matrix

210� 42x 42� 9x

42� 9x 12� 2x

� �
ð1-8Þ

One way of obtaining the roots is to expand the determinantal equation

210� 42x 42� 9x

42� 9x 12� 2x

����
���� ¼ 0 ð1-9Þ

To do this, multiply the binomials at the top left and bottom right (the principal

diagonal) and then, from this product, subtract the product of the remaining two

elements, the off-diagonal elements ð42� 9xÞ. The difference is set equal to zero:

ð210� 42xÞð12� 2xÞ � ð42� 9xÞ2 ¼ 0 ð1-10Þ
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This equation is a quadratic and has two roots. For quantum mechanical reasons, we

are interested only in the lower root. By inspection, x ¼ 0 leads to a large number

on the left of Eq. (1-10). Letting x ¼ 1 leads to a smaller number on the left of

Eq. (1-10), but it is still greater than zero. Evidently, increasing x approaches

a solution of Eq. (1-10), that is, a value of x for which both sides are equal. By

systematically increasing x beyond 1, we will approach one of the roots of the

secular matrix. Negative values of x cause the left side of Eq. (1-10) to increase

without limit; hence the root we are approaching must be the lower root.

Program

PRINT ‘‘Program QROOT’’

x¼ 0

20 x¼ xþ 1

a¼ (210 - 42 * x) * (12 - 2 * x) - (42 - 9 * x)^2
IF a > 0 GOTO 20

PRINT x: END

Program QROOT increments x by 1 on each iteration. It prints out 5 when the

polynomial on the right of line 4 is greater than 0. We have gone past the root

because x is too large. The program did not exit from the loop on x ¼ 4, but it did

on x ¼ 5, so x is between 4 and 5. By letting x ¼ 4 in the second line and changing

the third line to increment x by 0.1, we get 5 again so x is between 4.9 and 5.0.

Letting x ¼ 4:9 with an increment of 0.01 yields 4.94 and so on, until the increment

0.00001 yields the lower root x ¼ 4:93488.
Although we will not need it for our later quantum mechanical calculation, we

may be curious to evaluate the second root and we shall certainly want to check to

be sure that the root we have found is the smaller of the two. Write a program to

evaluate the left side of Eq. (1-10) at integral values between 1 and 100 to make an

approximate location of the second root. Write a second program to locate the

second root of matrix Eq. (1-10) to a precision of six digits. Combine the programs

to obtain both roots from one program run.

The Newton--Raphson Method

The root-finding method used up to this point was chosen to illustrate iterative

solution, not as an efficient method of solving the problem at hand. Actually, a more

efficient method of root finding has been known for centuries and can be traced

back to Isaac Newton (1642–1727) (Fig. 1-2).

Suppose a function of x, f(x), has a first derivative f 0(x) at some arbitrary value of

x, x0. The slope of f(x) is

f 0ðxÞ ¼ f ðx0Þ
ðx0 � x1Þ ð1-11Þ
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whence

x1 ¼ x0 � f ðx0Þ
f 0ðxÞ ð1-12Þ

The intersection of the slope and the x axis at x1 is closer to the root f(x)¼ 0 than

x0 was. By repeating this process, one can arrive at a point xn arbitrarily close to the

root.

Exercise 1-3

Carry out the first two iterations of the Newton–Raphson solution of the polynomial

Eq. (1-10).

Solution 1-3

The polynomial (1-10) can be written

x2 � 56xþ 252 ¼ 0 ð1-13Þ

The first derivative is

2x� 56 ¼ 0

Starting at x0 ¼ 0

x1 ¼ x0 � � 252

56

� �
¼ 4:5

and the second step yields

x2 ¼ 4:5� � 20:25

47

� �
¼ 4:93085 ð1-14Þ

x

f(
x)

f(x0)

x1 x0

Figure 1-2 The First Step in the Newton–Raphson Method.
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This approximates the root x ¼ 4:93488 from Program QROOT in only two steps.

Solution by the quadratic equation yields x ¼ 4:93487.

PROBLEMS

1. Show that Eq. (1-12) is the same as Eq. (1-11).

2. The energy of radiation at a given temperature is the integral of radiation

density over all frequencies

E ¼
ðn
0

rðn; TÞdn

Find E from the known integralð1
0

x3

ex � 1
dx ¼ p4

15

and compare the result with the Stefan–Boltzmann law

E ¼ 4s
c

� �
T4

where c is the velocity of light and s is an empirical constant equal to

5:67� 10�8 Jm�2 s�1. Just in case the value of the ‘‘known integral’’ is not

obvious to you (it isn’t to me, either), we shall determine it numerically in

another problem.

3. Analysis of the electromagnetic radiation spectrum emanating from the star

Sirius shows that lmax ¼ 260 nm. Estimate the surface temperature of Sirius.

Numerical Integration

The term ‘‘quadrature’’ was used by early mathematicians to mean finding a square

with an area equal to the area of some geometric figure other than a square. It is

used in numerical integration to indicate the process of summing the areas of some

number of simple geometric figures to approximate the area under some curve, that

is, to approximate the integral of a function. We include numerical integration

among the iterative methods because the integration program we shall use, fol-

lowing Simpson’s rule (Kreyszig, 1988), iteratively calculates small subareas under

a curve f (x) and then sums the subareas to obtain the total area under the curve.

This discussion will be limited to functions of one variable that can be plotted in

2-space over the interval considered and that constitute the upper boundary of a

well-defined area. The functions selected for illustration are simple and well-

behaved; they are smooth, single valued, and have no discontinuities. When

discontinuities or singularities do occur (for example the cusp point of the 1s

hydrogen orbital at the nucleus), we shall integrate up to the singularity but not

include it.
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Contrary to the impression that one might have from a traditional course in

introductory calculus, well-behaved functions that cannot be integrated in closed

form are not rare mathematical curiosities. Examples are the Gaussian or standard

error function and the related function that gives the distribution of molecular or

atomic speeds in spherical polar coordinates. The famous blackbody radiation

curve, which inspired Planck’s quantum hypothesis, is not integrable in closed form

over an arbitrary interval.

Heretofore, the integral of a function of this kind was usually approximated by

expressing it as an infinite series and evaluating some arbitrarily limited number of

terms of the series. This always leads to a truncation error that depends on the

number of terms retained in the sum before it is cut off (truncated). Numerical

integration may be used instead of series solution when the analytical form of the

function is known but not integrable or when the analytical form of the function is

not known because the functional relationship exists as an instrument plot or a

collection of paired measurements. This is the common case for data that have been

obtained in an experimental setting. An example is the function describing a

chromatographic peak, which may or may not approximate a Gaussian function.

We shall use the term analytical form to indicate a closed algebraic expression

such as

y ¼ x2 ð1-15Þ

as contrasted to functions that are expressed as an infinite series, for example,

CP ¼ aþ bT þ cT2 þ dT3 þ � � � ð1-16Þ

Equation (1-15) is an analytical form that has a closed integral. The Gaussian

function

f ðxÞ ¼ ð2pÞ�1=2
ez

2=2 ð1-17Þ

is a closed analytical form but it has no closed integral. (Try to integrate it!)

Several related ‘‘rules’’ or algorithms for numerical integration (rectangular rule,

trapezoidal rule, etc.) are described in applied mathematics books, but we shall rely

on Simpson’s rule. This method can be shown to be superior to the simpler rules for

well-behaved functions that occur commonly in chemistry, both functions for which

the analytical form is not known and those that exist in analytical form but are not

integrable.

Simpson’s Rule

In applying Simpson’s rule, over the interval [a, b] of the independent variable, the

interval is partitioned into an even number of subintervals and three consecutive

points are used to determine the unique parabola that ‘‘covers’’ the area of the first
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subinterval pair (see Fig. 1-3). The area under this parabolic arc is 1
3
wð f ðxiÞþ

4f ðxiþ1Þ þ f ðxiþ2ÞÞ. Summing for successive subinterval pairs over the entire

interval constitutes the method known as Simpson’s rule. Looking at the formula

below, one anticipates that an iterative loop will implement it on a microcomputerðb
a

f ðxÞdx ¼ 1
3
wð f ðx0Þ þ 4f ðx1Þ þ 2f ðx2Þ þ 4f ðx3Þ þ � � �

þ 2f ðxn�2Þ þ 4f ðxn�1Þ þ f ðxnÞÞ ð1-18Þ

Exercise 1-14

Show that the area under a parabolic arc that is convex upward is 1
3
wð f ðxiÞ þ 4f ðxiþ1Þþ

f ðxiþ2ÞÞ, where w is the width of the subinterval xiþ1 � xi.

Solution 1-4

The area under a parabolic arc concave upward is 1
3
bh, where b is the base of the figure

and h is its height. The area of a parabolic arc concave downward is 2
3
bh. The areas of

parts of the figure diagrammed for Simpson’s rule integration are shown in Fig. 1-3.

The area A under the parabolic arc in Fig. 1-3 is given by the sum of four terms:

A ¼ 2
3
wð f ðxiþ1Þ � f ðxiÞÞ þ wf ðxiÞ þ wð f ðxiþ2Þ þ 2

3
wð f ðxiþ1Þ � f ðxiþ2ÞÞ

¼ wð2
3
f ðxiþ1Þ þ 1

3
f ðxiÞ þ 2

3
f ðxiþ1Þ þ 1

3
f ðxiþ2ÞÞ

¼ 1
3
wð f ðxiÞ þ 4f ðxiþ1Þ þ f ðxiþ2ÞÞ

which was to be proven.

1

2

3

4

xi xi+1 xi+2

w

F(x)

x

Figure 1-3 Areas Under a Parabolic Arc Covering Two Subintervals of a Simpson’s Rule

Integration.
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Our Simpson’s rule program is written in QBASIC (Appendix A). Today’s

computer world is full of complicated and expensive software, some of which we

shall use in later chapters. Unfortunately, it is not hard to find software that is

overpriced and overwritten (which we shall not use). Although it is not appropriate

to recommend software in a book of this kind, the simple software used here has

been used for several years in both a teaching and a research setting. It works.

More complicated and expensive programs are not necessarily better programs.

One author recently described BASIC as a ‘‘primitive’’ language. Be that as it may,

BASIC is ideal for solving simple problems. A hammer is a primitive tool. I wonder

what our author friend would use to drive a nail.

Program QSIM is more general than any of the programs we have used to this

point. By changing the define function statement DEF fna in line 8 of Program

QSIM, one can obtain the integral of any well-behaved function between the limits

a and b, which are specified in the interactive input to line 5. The term

‘‘interactive’’ is used here to denote interaction between the system and the

operator (you). Line 6 is part of an INPUT statement requiring a response from

you. The program will not run until you have specified the limits of integration, a

and b along with n, the number of subintervals you wish to break the interval into.

(The input numbers are separated by commas.) Note that statement 7 takes the

subintervals in pairs so n must be an even number for the system to produce the

correct integral. We are using the term ‘‘system’’ to denote both the hardware and

software (hardwareþ software¼ system).

As an interesting beginning integration, let us determine the integral

ðb
a

f ðxÞdx ¼
ð10
0

100� x2 dx

over the interval [0, 10] We can solve this integral by conventional means as a

check on the result of numerical integration.

ð10
0

100� x2 dx ¼ 100x� x3

3

����10
0

¼ 1000� 1000

3
¼ 666:667

Program

CLS

PRINT ‘‘Program QSIM’’

PRINT ‘‘Simpson’s Rule integration of the area under y¼ f(x)’’

DEF fna (x)¼ 100 - x ^ 2 0***DEF fna lets you put any function you like here.

PRINT ‘‘input limits a, and b, and the number of iterations

desired n’’

INPUT a, b, n

d¼ (b - a) / n

FOR x¼ aþ d TO b STEP 2 * d
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sum¼ sumþ 4 * fna(x) þ 2 * fna(x - d): NEXT x

PRINT: PRINT: PRINT ‘‘RESULTS’’: PRINT

PRINT: PRINT ‘‘The interval is’’ ; a; ‘‘to’’; b; ‘‘’ ’

PRINT: PRINT ‘‘The number of iterations is ¼’’; n; ‘‘’’

a¼ d / 3 * (fna(a)þ sum - fna(b))

PRINT: PRINT ‘‘Numerical integration yields’’, a: END

Names of programs written in QBASIC begin with Q. Programs written in True
BASIC begin with T. Program QSIM differs from Programs QWIEN and QROOT

in having more documentation. Documentation is used to make the program and the

output easier for the operator to read. It is useful when a program is passed along to

a colleague who was not in on the writing and may have difficulty understanding the

logic of it. The CLS statement clears the screen, followed by a number of PRINT

statements that should be obvious from context. Note that a full colon : is equivalent

to a new line. Nothing enclosed in full quotes ‘‘ influences the functioning of the

numerical part of the program. The prime or apostrophe ’ in line 4 instructs the

system to ignore anything following it on the same line.

Efficiency and Machine Considerations

We selected a simple test function for integration. The function f ðxÞ ¼ 100� x2 is a

smooth, monotonically decreasing parabolic curve over the interval [0, 10]. It has a

closed definite integral over this interval of 666.667 units. The function is well-

behaved, and integration is easy over the first half of the interval but not so easy

over the second half of the interval owing to its increasing steepness. (Note that

steep functions can be integrated by an algorithm that sums horizontal slices of the

area under the curve rather than vertical ones.)

The approximation to the closed integral improves as the number of iterations

increases up to a point. The actual values in Table 1-1 may be system specific, that

is, different hardware and software combinations may give slightly different results

because of different ways of storing numbers. One is tempted to think of

approximations as getting better without limit, the sum approaching the integral

Table 1-1 Approach of the Area Sum of Program QSIM to 666.667

Iterations (Subintervals)*

10 100 1000 10000 100000 1000000

Area sum**

733.73 673.33 667.33 666.75 666.84 665.82

* Large numbers may be input as exponentials, for example, 1e6 ¼ 1� 106.

** May be system specific.
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as Achilles approached the tortoise. This does not occur, however, because of

machine rounding error. (Only so many digits can be stored on a chip.) The last few

entries in Table 1-1 show that for very many iterations, the area sum begins to

diverge from, rather than approach, the integral it is supposed to represent (see also

Norris, 1981). Keep rounding error in mind when writing programs with many

iterations.

Elements of Single-Variable Statistics

When we report the result of a measurement x, there are two things a person reading

the report wants to know: the magnitude (size) of the measurement and the

reliability of the measurement (its ‘‘scatter’’). If measuring errors are random, as

they very frequently are, the magnitude is best expressed as the arithmetic mean m
of N repeated trials xi

m ¼
P

xi

N
ð1-19Þ

and the reliability is best expressed as the standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðxi � mÞ2

N

s
ð1-20Þ

These equations apply when an entire population is available for measurement.

The most common situation in practical problems is one in which the number of

measurements is smaller than the entire population. A group of selected measure-

ments smaller than the population is called a sample. Sample statistics are slightly

different from population statistics but, for large samples, the equations of sample

statistics approach those of population statistics.

If very many measurements are made of the same variable x, they will not all

give the same result; indeed, if the measuring device is sufficiently sensitive, the

surprising fact emerges that no two measurements are exactly the same. Many

measurements of the same variable give a distribution of results xi clustered about

their arithmetic mean m. In practical work, the assumption is almost always made

that the distribution is random and that the distribution is Gaussian (see below).

Decision Making

A simple decision-making problem is: I measure variable x of a population A and

the same variable x of a population B. I get (slightly) different results. Is there a real

difference between populations A and B based on the difference in measurements,

or am I only seeing different parts of the distributions of identical populations?

A similar decision-making problem consists of very many measurements of

variable x on a large sample from population A, followed by a single measurement

of the same property x of an individual. The single measurement will not be

14 COMPUTATIONAL CHEMISTRY USING THE PC



precisely at the arithmetic mean of the large population. The question is whether the

difference between m for the large population and measurement x indicates that

the individual is not from the test population (is abnormal) or whether the deviation

can be ascribed to a normal statistical fluctuation.

The second decision-making situation is very close to the problem presented in

medical diagnosis in which we wish to know whether a patient is a member of the

healthy general population or not. We shall apply Gaussian statistics to a diagnostic

problem involving risk to a patient of atherosclerosis, given the blood cholesterol

analysis of very many normal patients to which we compare the blood cholesterol

analysis of the individual patient. In Computer Project 1-3, the patient is known to

have a high blood cholesterol level but the problem is whether the measured level is

sufficiently far from the mean of the normal population to be dangerous or whether

it is only the random fluctuation we expect to see in some normal patients.

The Gaussian Distribution

The Gaussian distribution for the probability of random events is

pðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp �ðxi � mÞ2

2s2

 !
ð1-21Þ

It is widely used in experimental chemistry, most commonly in statistical treatment

of experimental uncertainty (Young, 1962). For convenience, it is common to make

the substitution

z ¼ xi � m
s

ð1-22Þ

With this substitution, distributions having different m and s can be compared by

using the same curve, frequently called the normal curve (Fig. 1-4).

z0

p
(z

)

Figure 1-4 The Gaussian Normal Distribution.
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The integral of the Gaussian function over the interval [a, b] in a one-

dimensional probability space z is

pðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
ðb
a

e�z2=2dz ð1-23Þ

Equation (1-23) gives the probability of an event occurring within an arbitrary

interval [a, b] (Fig. 1-5). Equation (1-23) has been ‘‘normalized’’ by choosing

the right premultiplying constant 1ffiffiffiffi
2p

p to make the integral over all space [�1; 1]

come out to 1.00 . . . . (see Problems) so the probability over any smaller interval [a,

b] has a value not less than zero and not more than one.

The integral of the Gaussian distribution function does not exist in closed form

over an arbitrary interval, but it is a simple matter to calculate the value of p(z) for

any value of z, hence numerical integration is appropriate. Like the test function,

f ðxÞ ¼ 100� x2, the accepted value (Young, 1962) of the definite integral (1-23) is

approached rapidly by Simpson’s rule. We have obtained four-place accuracy or

better at millisecond run time. For many applications in applied probability and

statistics, four significant figures are more than can be supported by the data.

The iterative loop for approximating an area can be nested in an outer loop that

prints the area under the Gaussian distribution curve for each of many increments in

z. If the output is arranged in appropriate rows and columns, a table of areas under

one half of the Gaussian curve can be generated, for example, from 0.0 to 3.0 z,

resulting in printed values of the area at intervals of 0.01 z. This is suggested to the

interested reader as an exercise. We generated a 400-entry table in a negligible run

time. The Gaussian function is symmetrical, so knowing one half of the curve

z0

p
(z

)

a b

Figure 1-5 An Interval [a, b] on the Gaussian Normal Distribution.
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means that we know the other half as well. The practical value of generating a table

of Gaussian areas is small because many such tables are available in statistics

books. The method, however, can be applied to derivative functions of the Gaussian

function with only minor modifications, resulting in generation of tables of

considerable practical importance (see below).

COMPUTER PROJECT 1-3 j Medical Statistics

The first application of the Gaussian distribution is in medical decision making or

diagnosis. We wish to determine whether a patient is at risk because of the high

cholesterol content of his blood. We need several pieces of input information: an

expected or normal blood cholesterol, the standard deviation associated with the

normal blood cholesterol count, and the blood cholesterol count of the patient.

When we apply our analysis, we shall arrive at a diagnosis, either yes or no, the

patient is at risk or is not at risk.

But decision making in the real world isn’t that simple. Statistical decisions are

not absolute. No matter which choice we make, there is a probability of being

wrong. The converse probability, that we are right, is called the confidence level.

If the probability for error is expressed as a percentage, 100� (% probability for

error) ¼ % confidence level.

The Problem. Suppose that the total serum cholesterol level in normal adults has

been established as 200 mg/100 mL (mg%) with a standard deviation of 25 mg%,

that is, m ¼ 200 and s ¼ 25. (Please distinguish between mg% and % probability.)

A patient’s serum is analyzed for cholesterol and found to contain 265 mg% total

cholesterol.

a. May we say at the 0.95 (95%) confidence level that the patient’s cholesterol is

abnormally elevated, or is this just a chance fluctuation in a normal patient? To

do this, we must first calculate z and then show that the patient’s cholesterol

level is greater than or less than that of 95% of normal patients. For the reading

to be abnormally elevated with 95% confidence, the z-value must be in an area

above the 95% limit of the z-curve. The 95% limit of the z-curve is that point

on the z-axis with 95% of normal cholesterol measurements below it and 5% of

the measurements above it (Fig. 1-6).

b. May we reach the same conclusion at the 0.99% confidence level?

c. If the patient’s cholesterol level is just at the 95% level, there is a 5%

probability that his cholesterol is randomly high and not indicative of

pathology. What is the probability that the cholesterol reading obtained for

this patient (265 mg%) resulted from chance factors and does not indicate a

genuine atherosclerosis risk factor?

d. The relative consequences of predictive errors cannot be ignored. In alerting

the patient to risk, recommending reduction in eggs, meat, and fats, the

diagnostician may be wrong, and this will certainly annoy the patient.

Conversely, an erroneous failure to issue a warning carries the risk of the
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patient’s death. Relative severity of outcome error should be a factor in

evaluating the statistical results once they are known.

e. What is the 95% limiting cholesterol level (in mg%) in normal patients?

Procedure. Calculate z for the patient, his ‘‘z-score,’’ numerically from the

integral in Eq. (1-23). Compare this with the % probability of finding the same

z-score in a normal patient. Once knowing the probability of the patient’s z-score,

one knows the probability that his cholesterol reading is due to chance factors and

not indicative of risk. Note that the integral over the interval [�1; 0] on the z-axis

is 0.5000, so we know everything we need to know by calculating our integrals

from 0 to some upper limit. We are not worried about whether the patient’s

cholesterol level is low; we already know that it is well above the arithmetic mean.

The probability that xi will fall in the normal interval is the same as the probability

of a random z in the normal interval. We can then arrive at decisions a through e

with their relative confidence levels (and risk levels).

Determine the probability of a random z using Program QSIM by substituting

the two lines

m¼ 1 / (SQR(2 * 3.14159))

DEF FNA (X)¼ EXP(-X * X / 2) 0**** define function

in place of the single DEF fna line of Program QSIM. Notice the convenience

substitution of X for z. Multiply a by m in the final line

PRINT: PRINT ‘‘Numerical integration yields,’’ m * a: END

Use the results of your integrations to answer questions a–e. Turn in the results of

this experiment with a short discussion.

z0

p
(z

)

95% 5%

Figure 1-6 The Gaussian Distribution with the 95% Limit Indicated.
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Molecular Speeds

The Maxwell–Boltzmann distribution function (Levine, 1983; Kauzmann, 1966)

for atoms or molecules (particles) of a gaseous sample is

FðvxÞ ¼ m

2p kBT

� �1=2

eð�mv2x=2kBTÞ ð1-24Þ

for molecular velocity vectors vx about their arithmetic mean vx ¼ 0 along an

arbitrarily selected x-axis. The temperature is T, the mass of the particles (assumed

identical to one another) is m, and kB is the Boltzmann constant, 1:381� 10�23

J K�1.

The Maxwell–Boltzmann velocity distribution function resembles the Gaussian

distribution function because molecular and atomic velocities are randomly

distributed about their mean. For a hypothetical particle constrained to move on

the x-axis, or for the x-component of velocities of a real collection of particles

moving freely in 3-space, the peak in the velocity distribution is at the mean,

vx ¼ 0. This leads to an apparent contradiction. As we know from the kinetic theory

of gases, at T > 0 all molecules are in motion. How can all particles be moving

when the most probable velocity is vx ¼ 0?

The answer lies in the meaning of the probability curve. The maximum at vx ¼ 0

arises not because we have maximized our probability of guessing the right velocity

but because we have minimized the square of our probable error. (Using the square

of the error makes its sign irrelevant.) If we guess a velocity at some value of vx
other than zero, say a positive value, we will be right some of the time but the

square of our error will be large for all negative velocities (half of them). If we

guess vx ¼ 0, we will be wrong all of the time but the sum of squares of our errors

(positive and negative) will be least. In essence, the maximum of the velocity

probability curve is at zero because we are completely ignorant of the direction of

motion, and we had best make the guess that specifies no direction at all, namely,

zero. This is an application of the principle of least squares.

The distribution function for molecular speeds v is

GðvÞ ¼ m

2p kBT

� �3=2

eð�mv2=2kBTÞ4pv2 ð1-25Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y þ v2z

q
. These lead to the familiar speed distribution curves like

those in Fig. 1-7. Unlike the velocity vector, which can be negative, speed v is a

scalar and is always positive. The probability of finding vx between the limits [a, b]

is

pðvxÞ ¼
ðb
a

FðvxÞdvx ð1-26Þ
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and the probability of finding v in the interval [a, b] is

pðvÞ ¼
ðb
a

GðvÞdv ð1-27Þ

The most probable value of the speed vmp can be obtained by differentiation of

the distribution function and setting dGðvÞ=dv ¼ 0 (Kauzmann, 1966; Atkins 1990)

to obtain

vmp ¼ 2kBT

m

� �1=2

ð1-28Þ

which is the particle speed at the peak of the curve in Fig. 1-7.

COMPUTER PROJECT 1- 4 j Maxwell–Boltzmann Distribution Laws

In chemical kinetics, it is often important to know the proportion of particles with a

velocity that exceeds a selected velocity v0. According to collision theories of

chemical kinetics, particles with a speed in excess of v0 are energetic enough to

react and those with a speed less than v0 are not. The probability of finding a particle
with a speed from 0 to v0 is the integral of the distribution function over that interval

ðv0
0

GðvÞdv ¼ m

2pkBT

� �3=2ðv0
0

eð�mv2=2kBTÞ4pv2dv ð1-29Þ

Speed
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T = 200 K

T = 500 K

Figure 1-7 AMolecular Speed Distribution. The probability density is the expected number

of speeds within an infinitesimal speed interval dv.
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The probability of finding a particle with a molecular speed somewhere between 0

and 1 is 1.0 because negative molecular speeds are impossible; hence, the relative

frequency of speeds in excess of v0 is 1:0� Ð v0
0
GðvÞdv.

It is convenient to reason in terms of the fraction of particles having a velocity in

excess of vmp. The most probable velocity works as a normalizing factor, permitting

us to generate one curve that pertains to all gases rather than having a different

curve for each molecular weight and temperature. The integral of GðvÞdv over an

arbitrary interval, however, cannot be obtained in closed form. It is usually

integrated by parts (Levine, 1989) with the use of a scaling factor, to yield a

three-term equation that is evaluated to give the fraction f ðvÞ of particles with

speeds in excess of v0=vmp as a function of v0=vmp. This technique does not really

escape the problem of nonintegrable functions because the second term in the

evaluation for the frequency factor is a nonintegrable Gaussian.

It is also possible to integrate Eq. (1-29) directly by numerical means and to

subtract the result from 1.0 to obtain the proportion of particles with speeds

in excess of v0=vmp. In this project we shall use numerical integration of GðvÞdv
over various intervals to obtain f ðvÞ as a function of v0=vmp. Because vmp ¼
2kBT=mð Þ1=2 [Eq. (1-28)],

Ð v0
0
GðvÞdv can be writtenðv0

0

GðvÞdv ¼ 4ffiffiffi
p

p X2e�X2

dX ¼ 2:25626X2e�X2

dX ð1-30Þ

where X ¼ v0=vmp. This is the function we shall integrate in this project.

Procedure. Modify Program QSIM by substituting

DEF fna (X)¼ X * X * EXP(-X * X) * 2.25626

in place of the DEF fna line of Program QSIM and put

(1-a)

in place of

a

in the last line.

a. Using Program QSIM, generate the fraction of particles f(v) with a speed in

excess of v0=vmp as a function of v0=vmp by numerical evaluation of the integral

for intervals from 0 to 0.2, 0.4, etc. up to 2.0. Compare your plot of f(v) vs.

v0=vmp with the literature (Kauzmann, 1966, Rogers and Gratzer, 1984).

b. Find the speed below which 75% of N2 molecules move at 500 K. On average,

one in four N2 molecules is moving faster than the calculated value of v0 at
500K. Why is f(v) near but not equal to 0.5000 when v0 ¼ vmp? The median

speed is that speed at which half the particles in a collection are gong faster

than vmed and half are going slower. Use Program QSIM to determine the ratio

of vmed to vmp.

Because the computer cannot store an infinite number of bits, computations

leading to very small and very large numbers are often inaccurate unless special
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precautions are taken. Results of the present calculation are poor at high velocities

because of limitations imposed on handling very small exponential numbers.

Fortunately, an approximation formula for v0
vmp

� 1:0 is known (Kauzmann, 1966)

f ðvÞ ¼ 1ffiffiffi
p

p
� �

e�v2 2vþ 1

v

� �
ð1-31Þ

for the fraction of molecular velocities that are substantially in excess of vmp.

Particles moving with these extreme velocities are rare but important because, in

many reactions, only very fast-moving molecules react. The proportion of very

energetic molecules relative to ordinary molecules, say those with speeds in excess

of 4vmp, increases rapidly with temperature. This is the cause of an exponential rise

of reaction rate with temperature observed in many reactions (Arrhenius’ rate law).

Atomic Orbitals

Once a numerical integration scheme that permits easy insertion of defined

functions and convenient setting of the limits of integration has been set up and

debugged, we may wish to use numerical integration for convenience rather than

necessity. For example, establishing that hydrogenic wave functions have been

correctly normalized and distinguishing between normalized and nonnormalized

wave functions are common exercises in introductory quantum mechanic courses

and can be mathematically difficult for all but the lowest atomic orbitals. Because

the square of the wave function c2 at r is proportional to the probability of finding

an electron within an infinitesimal interval r þ dr, the integral over the entire range

0 < r < 1 must be a certainty, pðrÞ ¼ 1:0.
Normalization is the process of finding a multiplicative constant for the wave

function such that the integral of c2 over all space is 1.0. ‘‘All space’’ in this

calculation is nonnegative because r cannot be less than 0.

The 1s orbital c1s ¼ e�r is correct but not normalized. The normalized function

governing the probability of finding an electron at some distance r along a fixed axis

measured from the nucleus in units of the Bohr radius a0 ¼ 5:292� 10�11 m is

c1s ¼
1ffiffiffi
p

p 1

a0

� �
e�r=a0 ð1-32Þ

The probability function (1-33 below) governs the probability of finding the

electron at some distance r from the nucleus in any direction. Owing to the factor

r2, this function gives us the probability of finding the electron anywhere within

the interval r þ dr on the surface of a sphere of radius r. The radial function (1-32)

is monotonically decreasing, but the function in spherical polar coordinates

[Eq. (1-33)] goes through a maximum similar to that of the Maxwell–Boltzmann

function of the last computer project.

Spherically symmetric (radial) wave functions depend only on the radial

distance r between the nucleus and the electron. They are the 1s, 2s, 3s . . . orbitals
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of atomic hydrogen. For spherically symmetric wave functions, simply typing

FNA(X) as the wave function in question and integrating its square over the interval

[0;1] approximates 1.0 for normalized wave functions and something else for

nonnormalized functions. We cannot really integrate to an upper limit of infinity, so

we select an upper limit that is large relative to electronic excursions. If the upper

limit is not self-evident, it can be systematically incremented until a self-consistent

integral is found. When the integral no longer increases for a small increase in the

upper limit of integration, the limit is, for all practical purposes, ‘‘infinite.’’

Evaluation of the integral
Ð r2
r1
c2ðrÞdr, where cðrÞ is a normalized radial wave

function, yields the probability density for finding an electron within a finite

interval r1 < r < r2 from the nucleus. A common assigned problem in elementary

quantum chemistry (McQuarrie, 1983; Hanna, 1981) is to determine the probability

of finding an electron in the 1s orbital of a hydrogen atom at a radial distance of one

Bohr radius or less from the nucleus. This problem is usually solved by integration

in closed form (ans. pðrÞ ¼ 0:323Þ, but the wave function can easily be introduced

into an iterative procedure, such as a Simpson’s rule integration program, that

calculates the probability between any stipulated limits on r

pðrÞ ¼ 4

a30

ðr
0

r2e
�2r
a0 dr ¼ 4

ðx
0

x2e�2xdx ð1-33Þ

where x ¼ r=a0 and a0 is the Bohr radius. The value p in the normalization constant

of Eq. (1-33) cancels with the p in 4pr2 as the surface of a sphere. Check the

algebra to see that this is true.

COMPUTER PROJECT 1-5 j Elementary Quantum Mechanics

Procedure. Modify Program QSIM to perform the integration in Eq. (1-33) so as

to generate the probability of finding the electron within radial distances of 0.1, 0.2,

0.3, . . . 5.0 Bohr radii from the nucleus of the hydrogen atom. Check the function

(1-33) to verify that the program is working and that the function is normalized. (It

is.) Note that a correctly modified program run between limits of 0 and 1 at, say

n ¼ 1000 subintervals, gives the probability of finding the electron anywhere within

a sphere having a radius of 1.0 bohr with the nucleus at its center. This is a double

check on the program. You should get 0.323 in agreement with the analytical

integration mentioned above. In what radius interval of 0.10 bohr is the probability

of finding the electron greatest? What is the probability within that interval?

Draw a cumulative probability curve p(x) vs. x for finding an electron within any

given radius. The curve resembles an ogive or S-shaped curve common in chemical

applications, but it is flattened at the top owing to the non-Gaussian nature of the

square of the 1s wave function. An extension of this project is to set up probability

limits so that critical radii can be generated that contain the electron with a

probability of 0.1, 0.2, . . . 0.9. When these radii are known, probability contour

maps can be drawn (Gerhold, 1972). Draw the appropriate contour map for the

hydrogen atom. What is the probability of finding an electron between a and 2a,
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where a is the Bohr radius? As a further extension of this project, repeat the

procedure for the 2s and 3s orbitals of the hydrogen atom available in most physical

chemistry and quantum chemistry textbooks (e.g., House, 1998).

Entropy

The subject of entropy is introduced here to illustrate treatment of experimental

data sets as distinct from continuous theoretical functions like Eq. (1-33). Thermo-

dynamics and physical chemistry texts develop the equation

S2 ¼ S1 þ
ðT2
T1

CP

T
dT ð1-34Þ

where CP is the heat capacity at constant pressure, as the fundamental equation for

determining the enthalpy change S2 � S1 of a substance that is heated from T1 to T2
but does not suffer a phase change over that temperature interval. The alternative

form

S2 ¼ S1 þ
ðln T2
ln T1

CPdðln TÞ ð1-35Þ

is also used. Armed with the third law of thermodynamics, heat capacities, and

thermal data that permit calculation of accurate entropies of intervening phase

changes, these integrations permit one to determine absolute entropies.

Several examples have been given (Norris, 1981) in which the entropy change of

a diatomic gas at 500 K is determined from a knowledge of its entropy at 298.15 K

by numerical integration of accurate heat capacity data from 298 to 500 K. Several

other chemical applications of numerical integration are given, including determi-

nation of the equilibrium constant at an arbitrary temperature T2 from the integrated

van’t Hoff equation (Cox and Pilcher, 1970) and a knowledge of K1 at T1.

Supporting algorithms, data tables, references, and commentaries on the calcula-

tions are given.

In the first part of this project, the analytical form of the functional relationship

is not used because it is not known. Integration is carried out directly on the

experimental data themselves, necessitating a rather different approach to

the programming of Simpson’s method. In the second part of the project, a curve

fitting program (TableCurve, Appendix A) is introduced. TableCurve presents the

area under the fitted curve along with the curve itself.

COMPUTER PROJECT 1-6 j Numerical Integration of

Experimental Data Sets

For the first part of this project, we suppose that we are presented with the following

experimental data on the heat capacity at constant pressure CP of solid lead at

various temperatures up to and including 298 K (Table 1-2).

We shall assume that CP ¼ 0 at T ¼ 0 K. We wish to obtain the absolute entropy

of solid lead at 298 K. Each entry in Table 1-2 leads to a value of CP=T . The
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experimental data set can be entered into a Simpson’s rule integration program in

the form of a DATA statement consisting of 14 number pairs, T first and CP=T
second, in each pair. Note that spaces are not used in the data statement. There must

be an even number of data pairs for Simpson’s rule integration because the

subintervals are chosen in pairs.

A Shortcut. The spreadsheet Excel (Appendix A) is available on many micro-

computer systems. It is designed for business applications, not science, but it can be

useful for handling large data sets. In this problem, we have a set of 14 CP values at

corresponding T values and we would like to enter CP=T and T values into the

program. Carrying out the repeated divisions by hand calculator is not very time-

consuming or error-prone for this small problem, but it would be in a research

project generating hundreds of data points.

Once entered into a spreadsheet, data can be manipulated column at a time. For

example, let us take the ‘‘top cells’’ in Table 1-3 as cells A3 and B3 (columns A and

B, line 3 in Table 1-3) containing 5 and 0.305 to avoid dividing 0 by 0. Using the

easycalc option of the tools menu in Excel, divide the contents of B3 by A3 and

place the results in cell C3. Now select C3 and the remaining 12 unfilled cells in the

column, C3 to C15, and fill down using the mouse. The results of the calculation of

CP=T appear for all remaining cells in the C column.

Table 1-2 Experimental Heat Capacities at Constant Pressure for Lead

T, K 0 5 10 15 20 25 30 50 70

CP; J K
�1 mol�1 0 0.305 2.80 7.00 10.8 14.1 16.5 21.4 23.3

100 150 200 250 298

24.5 25.4 25.8 26.2 26.5

Table 1-3 Excel Output for Entropy Calculations

T CP CP=T

A1 B1

0 0

5 0.305 0.061

10 2.8 0.28

15 7 0.46667

20 10.8 0.54

25 14.1 0.564

30 16.5 0.55

50 21.4 0.428

70 23.3 0.33286

100 24.5 0.245

150 25.4 0.16933

200 25.8 0.129

250 26.2 0.1048

298 26.5 0.08893
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Note that different spreadsheets and different versions of the same spreadsheet

vary in the details of the calculation but that the basic idea for all is to carry out the

calculation for the top cell and ‘‘fill in’’ the remaining cells in the same column with

the mouse—a very convenient technique for simple calculations on large data sets.

Consult the Help section of your spreadsheet for specific details.

Program

Program QENTROPY

DIM X(100), Y(100)

DATA 0,0,5,.061,10,.28,15,.4666,20,.54,25,.564,30,.55,50,

.428, 70,.333,100,.245

DATA 150,.169,200,.129,250,.105,298,.089

N¼ 14

FOR I¼ 1 TO N: READ X(I), Y(I) 0this module reads the data set

PRINT X(I), Y(I)

NEXT I

FOR I¼ 0 TO N � 2 STEP 2 0this module calculates the

S¼ Sþ (X(Iþ 1) � X(I)) * (Y(I)) 0area of the rectangular

S¼ Sþ (X(Iþ 2) � X(Iþ 1)) * Y(Iþ 2) 0blocks
NEXT I

FOR I¼ 0 TO N � 2 STEP 2 0this module calculates the area under

S¼ Sþ (X(Iþ 1) � X(I)) * 0the parabolas 1, 4 in Fig. 1-3.

(Y(Iþ 1) � Y(I)) *.6667

S¼ Sþ (X(Iþ 2) � X(Iþ 1)) * (Y(Iþ 1) � Y(Iþ 2)) *.6667

NEXT I: PRINT

PRINT ‘‘THE ENTROPY (CHANGE) IS:’’: PRINT S: END

The DIM statement in Program QENTROPY sets aside 100 memory locations

for the experimental data points. It is necessary for any data set having more than

12 data pairs. What is the entropy of Pb at 100 and 200 K? Make a rough sketch of

the curve of Cp vs. T for lead. Sketch the curve of Cp=T vs. T for lead.

Sigmaplot and Tablecurve

Jandel Scientific produces two programs that have many features useful in data

processing. Both are rather complicated, intended for professional rather than

student use, consequently some learning time must be invested to become

proficient. This time is amply repaid later and the learning curve is not steep, so

one can put these programs to practical use on relatively simple problems while

learning how to handle more difficult ones. We shall give two examples here: curve

plotting using SigmaPlot and curve fitting with numerical integration using

TableCurve.
On entering SigmaPlot (we use version 5.0), one is presented with a data table

that is essentially a spreadsheet. Enter T as the independent or x-variable into

the first column of the SigmaPlot data table and CP=T as the dependent or y-

variable into the second column. The SigmaPlot data table should resemble columns

1 and 3 of Table 1-3. Rounding to three significant figures is permissible.
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After the data set has been entered and saved, one has several plotting options

represented by icons in square boxes at the left of the data table. Click on the icon

with a single zig-zag line to select a single plot on rectangular coordinates. After

selection of the single plot option, one is presented with several suboptions. Select

the option represented by the wavy line for a spline fit (similar to Simpson’s rule) to

give a single continuous curve through the points. After selection of the spline fit,

one is presented with a ‘‘plotting wizard’’ that asks if you want an x-y plot. Click

yes. Now specify the x variable as column 1 and the y variable as column 2. The

wizard will present you with the option Finish. Click on Finish to obtain a plot that

is in all essential respects Fig. 1-8 except for some cosmetic changes that you can

make according to the instructions in the SigmaPlot manual or the Help file.

Different systems may require different protocols to obtain one of many possible

graphs, and several protocols in one system often achieve the same result. At entry

level, all this may seem a bit bewildering, but to anyone who has struggled with

mechanical drawing tools to make a simple line drawing like Fig. 1-8, SigmaPlot
seems a miracle.

To anyone who has carried out curve-fitting calculations with a mechanical

calculator (yes, they once existed) TableCurve (Appendix A) is equally miraculous.

TableCurve fits dozens, hundreds, or thousands of equations to a set of experi-

mental data points and ranks them according to how well they fit the points,

enabling the researcher to select from among them. Many will fit poorly, but usually

several fit well.

We shall find the equation that best fits the points in columns 1 and 3 of Table

1-3 with TableCurve. On opening TableCurve, one is presented with a blank

desktop with several commands at the top. The command to enter data is not Enter

but Edit. Two formats are available, the TableCurve editor and the ASCII editor.

The TableCurve format is probably a little simpler than the ASCII format, but they

are both fairly self-evident and either should yield a data file resembling the data

T, K
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K
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Figure 1-8 CP=T vs. T for Lead.
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file for SigmaPlot. Each x-variable should be entered as an entry in the first column,

followed by the y-variable as an entry in the second column. The statistical weight

of each data point is 1, which is automatically entered in the TableCurve format.

Click on Process ) Fit all equations and wait a moment while the curve fitting

takes place. The formula of the best fit will appear with a graph showing the curve

of the equation and the data points for comparison. In this case, the fit of the first

ranked equation is very good. The first ranked equation turns out to be a quotient of

polynomials

y0:5 ¼ ðaþ cxþ ex2Þ=ð1þ bxþ dx2 þ fx3Þ ð1-36aÞ
that is,

Cp

T
¼ ðaþ cT þ eT2Þ2

ð1þ bT þ dT2 þ f T3Þ2 ð1-36bÞ

where constants a through f are empirical fitting constants given by the program.

Equations fitting the curve with a lower ranking according to closeness of fit are

also given.

Along with the curve fitting process, TableCurve also calculates the area under

the curve. According to the previous discussion, this is the entropy of the test

substance, lead. To find the integral, click on the numeric at the left of the desktop

and find 65.06 as the area under the curve over the range of x. The literature value

depends slightly on the source; one value (CRC Handbook of Chemistry and

Physics) is 64.8 J K�1 mol�1.

Mathcad

Before posing the problem for this computer project, we shall introduce another

very useful piece of microcomputer software by repeating the integration of

Eq. (1-36a) with Mathcad (Appendix A). Like other software of this kind, there

is a short learning process before mathcad can be used with ease. Once one has

entered the equation of interest, mathcad solves it with a click on the ¼ sign. In the

present example, the constants of (Eq. 1-36a) are entered followed by the desired

integral

a :¼ 0:013003 b :¼ 0:017052 c :¼ 0:068394 d :¼ 0:002334 e :¼ 0:000745
f :¼ 0:000002912ð298

0

ðaþ c � xþ e � x2Þ2
ð1þ b � xþ d � x2 þ f � x3Þ2 dx ¼ 65:061

Note that the constants must be defined equal to their numerical values (defined ¼
is ; on the keyboard). These definitions must be above the integral you wish to

solve. Mathcad operates top down. Mathcad produces the same value for the

integral that we obtained from TableCurve. This calculation is redundant with the

calculations already performed in this section to introduce new software by solving

a problem for which we already know the answer.
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The Problem (at last).

A lustrous metal has the heat capacities as a function of temperature shown in

Table 1-4 where the integers are temperatures and the floating point numbers

(numbers with decimal points) are heat capacities. Print the curve of CP vs. T and

CP=T vs. T and determine the entropy of the metal at 298 K assuming no phase

changes over the interval [0, 298]. Use as many of the methods described above as

feasible. If you do not have a plotting program, draw the curves by hand. Scan a

table of standard entropy values and decide what the metal might be.

PROBLEMS

1. Show that the area under a parabolic arc similar to Fig. 1-3 but that is concave

upward is 1
3
wð f ðxiÞ þ 4f ðxiþ1Þ þ f ðxiþ2ÞÞ.

2. Compute the probability of finding a randomly selected experimental measure-

ment between the limits of �0.5 standard deviations from the mean.

3. Given experimental measurements with m ¼ 123:4 and s ¼ 12:9, draw the

entire probability distribution curve for the population of all experimental

measurements in the class studied.

4. Write a program in BASIC to generate the area under the normal curve over the

interval [0, 4] at intervals of 0.01z.

5. The program in Problem 4 gives final values for the integral under the normal

curve that are obviously too large. The last entry is 0.5002, whereas, from the

nature of the problem, we know that the integral cannot exceed 0.5000. Suggest

a reason for this.

6. If Eq. (1-22) is normalized to 1.0, then

f ðzÞ ¼
ðb
a

e�z2=2dz

should be
ffiffiffiffiffiffi
2p

p
for [�1; 1]. Find out if this is true by numerical integration

using limits on the integral that are wide enough that the area under the curve

doesn’t change by more than a part per thousand or so for a small change in the

limits of integration.

7. (a) Is the atomic wave function

� ¼ 1ffiffiffi
p

p e�r

normalized to 1?

Table 1-4 Experimental Heat Capacities at Constant Pressure for an

Unknown Metal

0,0,5,0.24,10,0.64,15,1.36,20,2.31,25,3.14,30,4.48,50,9.64,70,15.7,100,20.1,150,22.0,

200,23.4,250,24.3,298,25.5
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(b) The probability that the electron in the H atom will be found at a radial

distance r from the nucleus is

pðrÞ ¼
ðr
0

4r2e�2rdr

where r is measured in units of bohr (1 bohr¼ 52.92 pm). What is the

probability that the electron will be found within 2 bohr radii?

(c) At approximately what radial distance is the probability of finding the H

atom electron less than 1%?

8. What is the probability of finding an electron between 0.6 and 1.2 Bohr radii of

the nucleus. Assume the electron to be in the 1s orbital of hydrogen.

9. The 2s orbital of hydrogen can be written

� ¼ ð2� rÞe�r

Plot this orbital with appropriate scale factors to determine the behavior of � in

rectangular coordinates. Describe its behavior in spherical polar coordinates.

10. Plot the probability density obtained from � in Problem 9 as a function of r,

that is, simply square the function above with an appropriate scale factor as

determined by trial and error. Comment on the relationship between your plot

and the shell structure of the atom.

11. Sketch the probability of finding an electron in the 2s orbital of hydrogen at

distance r from a hydrogen nucleus as a function of r as a contour map with

heavy lines at high probability and light lines at low probability. How does this

distribution differ from the 1s orbital?

12. Draw the curve of CP vs. T and CP=T vs. T from the following heat capacity

data for solid chlorine and determine the absolute entropy of solid chlorine at

70.0 K
T 5 10 15 20 25 30 35 40 50 60 70

CP 0.14 1.10 3.72 7.74 12.09 16.69 20.79 23.97 29.25 33.47 36.32

13. Which of the following two integrals is wrong?

1:

ð1
0

x3e�ax2dx ¼ 1

2a2

2:

ð1
�1

x3e�ax2dx ¼ 1

2a

14. A function for which f ðxÞ ¼ �f ð�xÞ over a specific intereval is called an odd

function over that interval. If f ðxÞ ¼ f ð�xÞ, the function is even. For example,

y ¼ x, is an odd function over ½�2; 2�. The interval ½�2; 2� is symmetrical about

x ¼ 0. Write some odd functions. Write some even functions. Find a general

rule for the integrals of odd functions over a symmetrical interval. Find a

general rule for the integral of the product of an odd function and an even

function over an interval that is symmetrical for both.
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C H A P T E R

2
Applications of Matrix Algebra

A matrix is a rectangular array of elements, for example,

A ¼ a11 a12
a21 a22

� �
Each element is designated with a double subscript; in general, an element is called

aij where j is its horizontal position in the ith row of the matrix. A matrix with

m rows and n elements in each row is an m� n matrix. A square matrix with

n elements in each row is an n� n matrix.

Matrix Addition

Matrices obey an algebra of their own that resembles the algebra of ordinary

numbers in some respects and not in others. The elements of a matrix may be

numbers, operators, or functions. We shall deal primarily with matrices of numbers

in this chapter, but matrices of operators and functions will be important later.

Addition and subtraction of matrices is carried out by adding or subtracting

corresponding elements. With matrices denoted by boldface capital letters and

matrix elements by lower case letters, if

C ¼ Aþ B ð2-1Þ
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then each element in C is the sum of the corresponding elements in A and B

cij ¼ aij þ bij ð2-2Þ
It should be evident that there must be the same number of elements in two matrices

to be added and that the elements must be arranged in the same way, so that there is

a match of one element in matrix A with its corresponding element in matrix B.

Such matrices are said to be conformable to addition.

Exercise 2-1

Give an example of matrices that are conformable to addition and an example of matrices

that are not.

Solution 2-1

The matrices

2 7

1 1

� �
and

�4 �1

0 �3

� �
are conformable to addition and have the sum

�2 6

1 �2

� �

The matrices

2 7 3

1 1 5

� �
and

4 �1

0 �3

� �

are not conformable to addition.

Subtraction of matrices is the inverse of addition. If

D ¼ A�B ð2-3Þ
then

dij ¼ aij � bij ð2-4Þ
where matrices A and B must be conformable to subtraction.

The normal rules of association and commutation apply to addition and

subtraction of matrices just as they apply to the algebra of numbers. The zero

matrix has zero as all its elements; hence addition to or subtraction from A leaves A

unchanged

Aþ 0 ¼ A ð2-5Þ

We shall denote the zero matrix as 0, not 0 or O. The zero matrix is sometimes

called the null matrix.
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Matrix Multiplication

Multiplication of a matrix A by a scalar x follows the rules one would expect from

the algebra of numbers: Each element of A is multiplied by the scalar. If

E ¼ xA ð2-6Þ

then

eij ¼ xaij ð2-7Þ

Multiplication of two matrices, however, is quite different from multiplication of

two numbers. The first row of the premultiplying matrix is multiplied element by

element into the first column of the postmultiplying matrix, and the resulting sum is

the first element in the product matrix. This process is repeated with the first row of

the premultiplying matrix and the second column of the postmultiplying matrix to

obtain the second element in the product matrix and so on, until all of the elements

of the product matrix have been filled in. If

F ¼ AB ð2-8Þ

where A is the premultiplying matrix and B is the postmultiplying matrix, then

fij ¼
Xn
k¼1

aikbkj ð2-9Þ

To be conformable to multiplication, the horizontal dimension of A must be the

same as the vertical dimension of B, that is, nA ¼ mB. Square matrices of the same

size are always conformable to multiplication. This unusual definition of multi-

plication, with its rules for dimensions, will become clear with repeated use. The

matrices we shall be interested in will usually be square; you should assume that the

matrices discussed below are square unless otherwise stipulated. The rules for

rectangular matrices and column and row matrices will be developed as needed.

Except in special cases, matrix multiplication is not commutative,

AB 6¼ BAgeneral case ð2-10Þ

which is why we are careful to distinguish between the premultiplying and

postmultiplying matrices.

Exercise 2-2

Find the product AB and the product BA where

A ¼ 1 2

3 4

� �
and B ¼ 5 6

7 8

� �
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Solution 2-2

AB ¼ 19 22

43 50

� �
and BA ¼ 23 34

31 42

� �

Division of Matrices

Division of matrices is not defined, but the equivalent operation of multiplication by

an inverse matrix (if it exists) is defined. If a matrix A is multiplied by its own

inverse matrix, A�1, the unit matrix I is obtained. The unit matrix has 1s on its

principal diagonal (the longest diagonal from upper left to lower right) and 0s

elsewhere; for example, a 3� 3 unit matrix is

I ¼
1 0 0

0 1 0

0 0 1

0
@

1
A

The unit matrix plays the same role in matrix algebra that 1 plays in ordinary

algebra. Multiplication of a matrix by the unit matrix leaves it unchanged:

AI ¼ A ð2-11Þ

Inverse matrices are among the special matrices that commute

AA�1 ¼ A�1A ¼ I ð2-12Þ

Among the ordinary numbers, only 0 has no inverse. Many matrices have no

inverse. The question of whether a matrix A has or does not have a defined inverse

is closely related to the question of whether a set of simultaneous equations has or

does not have a unique set of solutions. We shall consider this question more fully

later, but for now recall that if one equation in a pair of simultaneous equations is a

multiple of the other,

xþ 2y ¼ 4

2xþ 4y ¼ 8
ð2-13Þ

no unique solution exists. Similarly for matrices, if one row (or column) of

elements is a multiple of any other in the matrix, for example,

A ¼ 1 2

2 4

� �
ð2-14Þ

no inverse exists.
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Exercise 2-3

Obtain the product matrix AB where

A ¼
1 2 3

4 5 6

7 8 9

0
@

1
A and B ¼

1 0 1

2 2 2

4 1 3

0
@

1
A

Solve the problem by hand. The operation requires 27 individual multiplications and 9

additions.

Exercise 2-4

Write a short BASIC program to solve for AB above. Solve for BA. Do AB and BA

commute? Solve the same problem using Mathcad.

Solutions 2-3 and 2-4

Both problems can be solved by hand, by writing a short BASIC program, or by Mathcad

as follows:

A :¼
1 2 3

4 5 6

7 8 9

0
B@

1
CA B :¼

1 0 1

2 1 2

4 1 3

0
B@

1
CA

A � B ¼
17 5 14

38 11 32

59 17 50

0
B@

1
CA

B � A ¼
8 10 12

20 25 30

29 37 45

0
B@

1
CA

Note that in Mathcad, both matrices must be defined above the problem to be worked. In

Mathcad, the symbol A :¼means ‘‘matrix A is set equal to.’’

Powers and Roots of Matrices

If two square matrices of the same size can be multiplied, then a square matrix can

be multiplied into itself to obtain A2;A3, or An. A is the square root of A2 and the

nth root of An. A number has only two square roots, but a matrix has infinitely

many square roots. This will be demonstrated in the problems at the end of this

chapter.
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Matrix Polynomials

Polynomial means ‘‘many terms.’’ Now that we are able to multiply a matrix by a

scalar and find powers of matrices, we can form matrix polynomial equations, for

example,

A2 þ 4Aþ 5I ¼ 0 ð2-15Þ

There are infinitely many matrices that satisfy this polynomial equation; hence, the

polynomial has infinitely many roots.

Exercise 2-5

Show that the matrix

A ¼ 2 3

3 2

� �

satisfies the polynomial

A2 � 4A� 5I ¼ 0

Solution 2-5

Using Mathcad we get

A :¼ 2 3

3 2

� �
I :¼ 1 0

0 1

� �

A2 � 4 � A� 5 � I ¼ 0 0

0 0

� �

Notice that the matrix A does not have to be squared before entering it into the Mathcad

equation. Mathcad does the work of squaring A as part of the solution of the matrix

equation. (keystroke : translates as :¼ in Mathcad.)

Exercise 2-6

Find the roots of the ordinary polynomial

a2 � 4a� 5 ¼ 0 ð2-16Þ

Exercise 2-7

Note that the matrix polynomial in A can be factored to give

ðA� 5IÞ and ðAþ IÞ
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Perform the subtraction and addition above and multiply the resultant matrices to show

that the null matrix is obtained.

Solution 2-7

Mathcad yields

A :¼ 2 3

3 2

� �
I :¼ 1 0

0 1

� �

ðA� 5IÞ � ðAþ IÞ ¼ 0 0

0 0

� � ð2-17Þ

The Least Equation

The general form for a matrix polynomial equation satisfied by A is

cmA
m þ cm�1A

m�1 þ � � � þ c0I ¼ 0 ð2-18Þ

The least equation is the polynomial equation satisfied by A that has the smallest

possible degree. There is only one least equation

Ak þ ck�1A
k�1 þ � � � þ c0I ¼ 0 ð2-19Þ

The degree of the least equation, k, is called the rank of the matrix A. The degree k

is never greater than n for the least equation (although there are other equations

satisfied by A for which k > n). If k ¼ n, the size of a square matrix, the inverse

A�1 exists. If the matrix is not square or k < n, then A has no inverse.

One method of finding the least equation for the simple second degree case is

illustrated. Find a number r such that

A2 � rI

is a matrix that has 0 as the lead element (the element in the 1,1 position). Now, find

a number s such that

A� sI

has 0 as the lead element. Find a number t such that

ðA2 � rIÞ � tðA� sIÞ ¼ 0

This leads to the least equation

A2 � tAþ ðts� rÞI ¼ 0 ð2-20Þ
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where the coefficients c0 ¼ ts� r and c1 ¼ �t in Eq. (2-18). If the coefficient

c0 ¼ 0, the matrix A is singular and has no inverse. The method can be extended to

higher degrees, but it soon becomes tedious.

Exercise 2-8

Use the method given above to find the least equation of the matrix

A ¼ 2 1

1 3

� �

Does A have an inverse?

Solution 2-8

A2 � 5Aþ 5I ¼ 0

c0 6¼ 0

A�1 exists and is
0:6 �0:2

�0:2 0:4

� �

Verify this solution by calculating and substituting A2 and 5A to prove the equality. We

can see that A�1 exists because neither row nor column can be obtained from the other by

simple multiplication. They are linearly independent.

Importance of Rank

The degree of the least polynomial of a square matrix A, and hence its rank, is the

number of linearly independent rows in A. A linearly independent row of A is a row

that cannot be obtained from any other row in A by multiplication by a number. If

matrix A has, as its elements, the coefficients of a set of simultaneous nonhomo-

geneous equations, the rank k is the number of independent equations. If k ¼ n,

there are the same number of independent equations as unknowns; A has an inverse

and a unique solution set exists. If k < n, the number of independent equations is

less than the number of unknowns; A does not have an inverse and no unique

solution set exists. The matrix A is square, hence k > n is not possible.

Importance of the Least Equation

A number s for which

A� sI ð2-21Þ
has no reciprocal is called an eigenvalue of A. The equation

AV ¼ sV ð2-22Þ
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where V is a vector (or vector function), is called the eigenvalue equation. If

Ak þ ck�1A
k�1 þ � � � þ c0I ¼ 0 ð2-23Þ

is the least equation satisfied by A, then s is an eigenvalue only if

sk þ ck�1s
k�1 þ � � � þ c0 ¼ 0 ð2-24Þ

This is one way of finding eigenvalues. All atomic and molecular energy levels are

eigenvalues of a special eigenvalue equation called the Schroedinger equation.

Exercise 2-9

Perform the matrix subtraction

A� EI

where

A ¼ a b
b a

� �

What is the condition on the resulting matrix that must be met if E is to be an eigenvalue

of A?

Solution 2-9

A� EI ¼ a� E b
b a� E

� �

The matrix a�E b
b a�E

	 

must have no inverse.

Historical Note. It is interesting to note (Pauling and Wilson, 1935) that the very

first systematic approach to what we now call quantum mechanics was made by

Heisenberg, who began to develop his own algebra to describe the frequencies and

intensities of spectral transitions. It was soon seen by Born and Jordan that

Heisenberg’s ‘‘new’’ algebra is really matrix algebra. Heisenberg’s eigenfunctions

were later called wave functions by Schroedinger in an independent but equivalent

method. Schroedinger’s method is now called wave mechanics and is the method

most familiar to chemists. Heisenberg’s method is called matrix mechanics.

Special Matrices

The transpose AT of a matrix is obtained by reflecting the matrix through its

principal diagonal:

aTij ¼ aji ð2-25Þ
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Properties of the transpose include

ðAþ BÞT ¼ AT þ BT ð2-26Þ

and

ðABÞT ¼ BTAT ð2-27Þ

(note the order of A and B).

Exercise 2-10

Demonstrate that properties (2-26) and (2-27) hold for arbitrarily selected matrices A

and B.

A symmetric matrix equals its own transpose.

A ¼ AT ð2-28Þ

Exercise 2-11

Give three examples of symmetric matrices.

The transpose of an orthogonal matrix is equal to its inverse

AT ¼ A�1 ð2-29Þ

The trace of a matrix is the sum of the elements on its principal diagonal

trðAÞ ¼
X

aii ð2-30Þ

Exercise 2-12

What is the trace of a unit matrix of size n?

A diagonal matrix has nonzero elements only on the principal diagonal and

zeros elsewhere. The unit matrix is a diagonal matrix. Large matrices with small

matrices symmetrically lined up along the principal diagonal are sometimes

encountered in computational chemistry.

A tridiagonal matrix has nonzero elements only on the principal diagonal and on

the diagonals on either side of the principal diagonal. If the diagonals on either side

of the principal diagonal are the same, the matrix is a symmetric tridiagonal matrix.

Triangular matrices have nonzero elements only on and above the principal

diagonal (upper triangular) or on and below the principal diagonal (lower trian-

gular). Some of the more important numerical methods are devoted to transforming

a general matrix into its equivalent diagonal or triangular form.
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A column matrix is an ordered set of numbers; therefore, it satisfies the definition

of a vector. The 2� 1 array

x ¼ 1

2

� �

is both a matrix and a vector in 2-space. An m� 1 matrix has one element in each

of m rows; therefore, it is one way of representing a vector in an m-dimensional

space. An m� n matrix may be thought of as representing n vectors in m-space

where each vector is a column in the matrix. The transpose of a column matrix is a

row matrix, which can also represent a vector.

The Transformation Matrix

If a vector x is transformed into a new vector x0 by a matrix multiplication

x0 ¼ Ax ð2-31Þ
then A is a transformation matrix. If several vectors are transformed in the same

operation, where X is the matrix consisting of the column vectors xi, we write

X0 ¼ AX

If the transformation matrix is orthogonal, then the transformation is orthogonal. If

the elements of A are numbers (as distinct from functions), the transformation

is linear. One important characteristic of an orthogonal matrix is that none of its

columns is linearly dependent on any other column. If the transformation matrix

is orthogonal, A�1 exists and is equal to the transpose of A. Because A�1 ¼ AT

AAT ¼ AA�1 ¼ A�1A ¼ ATA ¼ I ð2-32Þ
Orthogonal transformations preserve the lengths of vectors. If the same ortho-

gonal transformation is applied to two vectors, the angle between them is preserved

as well. Because of these restrictions, we can think of orthogonal transformations as

rotations in a plane (although the formal definition is a little more complicated).

If two matrices are related as

B ¼ C�1AC ð2-33Þ
then B and A are similar matrices. If the squares of the coefficients of each of two

or more orthogonal vectors add up to 1, the vectors are orthonormal. If A is

symmetric, the vectors of A are or can be chosen to be orthonormal and X in the

equation

AX ¼ XD

D ¼ X�1AX ¼ XTAX
ð2-34Þ
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holds, where the vectors comprising the matrix X are called eigenvectors. D has

been chosen to be a diagonal matrix with the eigenvalues of A on the principal

diagonal. The question is whether we can find X. If we can, we have successfully

converted A into a similar matrix D that has only one element in each row or

column. If A was the matrix of coefficients of (possibly many) simultaneous

equations, D is the matrix of coefficients of a mathematically similar set of

equations, each equation containing only one term. Thus the entire set of equations

has been solved if we can find X in Eqs. 2-34. We shall go into the details of this

problem later. The point here is that matrix A can be reduced to a very simple form

D if we can find or approximate the matrix of eigenvectors X.

Complex Matrices

Numbers may be real, a, imaginary, ic, or complex, a� ic, where i ¼ ffiffiffiffiffiffiffi�1
p

. The

elements in a matrix may be complex numbers. If so, the matrix is complex

A ¼ Bþ iC ð2-35Þ
(For a real matrix, C ¼ 0.) The complex conjugate of a complex matrix A is A�. In
A�, each element in A replaced by its complex conjugate; a� ic becomes a	 ic.

The complex conjugate A� of A is

A� ¼ B� iC ð2-36Þ
The Hermetian conjugate of A is the transpose of A�

AH ¼ ðA�ÞT ð2-37Þ
The Hermetian conjugate plays the same role for complex matrices that the

symmetric matrix plays for real matrices.

If the Hermetian conjugate of a square complex matrix is equal to its inverse,

UH ¼ U�1 ð2-38Þ
the matrix U is called a unitary matrix. A Hermetian matrix is reduced to diagonal

form by a unitary transformation

D ¼ UHAU ¼ U�1AU ð2-39Þ
where D is real with elements equal to the eigenvalues of A. U has columns that are

eigenvectors of A.

What’s Going On Here?

The best way to avoid losing the physics of these procedures is to think of a particle

describing an elliptical path about an origin. If we choose our coordinate system in

an arbitrary way, the result might look like Fig. 2-1 (left).
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In general, the equation describing an elliptical path

ax2 þ 2bxyþ cy2 ¼ Q

contains mixed terms, 2bxy. For example, the equation of the ellipse on the left in

Fig. 2-1 might look something like

5x2 þ 8xyþ 5y2 ¼ 9 ð2-40Þ

If we can find the appropriate X matrix to carry out a similarity transformation on

the coefficient matrix for the quadratic equation (2-40)

A ¼ a b

b c

� �
¼ 5 4

4 5

� �
ð2-41Þ

we get

A0 ¼ 1 0

0 9

� �
ð2-42Þ

which leads to the equation of the ellipse as represented on the right of Fig. 2-1

x02 þ 9y02 ¼ 9 ð2-43Þ

It turns out that the ‘‘appropriate Xmatrix’’ of the eigenvectors of A rotates the axes

p/4 so that they coincide with the principle axes of the ellipse. The ellipse itself is

unchanged, but in the new coordinate system the equation no longer has a mixed

term. The matrix A has been diagonalized. Choice of the coordinate system has no

influence on the physics of the situation, so we choose the simple coordinate system

in preference to the complicated one.

The physical meaning of the sections on transformation matrices and unitary

matrices is that we can try to rotate our coordinate system so that each component

y

x

Figure 2-1 A Particle on an Elliptical Orbit.
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of the motion is independent of all the rest. We may be successful or nearly

successful. Note well that there is no restriction on the number of dimensions of the

n-dimensional space the coordinate system spans. When, in future work, we seek to

diagonalize an n-dimensional matrix, we are seeking to rotate a set of orthonormal

axes, one in each dimension of an n-space, such that each axis is a principal axis of

the matrix.

The unitary transform does the same thing as a similarity transform, except that

it operates in a complex space rather than a real space. Thinking in terms of an

added imaginary dimension for each real dimension, the space of the unitary matrix

is a 2m-dimensional space. The unitary transform is introduced here because atomic

or molecular wave functions may be complex.

PROBLEMS

1. Carry out hand calculations to find the products AB and BA

A ¼
3 0 3

4 �1 �1

1 2 5

0
@

1
A B ¼

1 1 1

�2 1 6

3 4 5

0
@

1
A

Do A and B commute?

2. Write a program in BASIC to carry out the multiplications in Problem 1. Cross-

check your program results with your hand calculations from Problem 1.

3. Invert A in Problem 1. Systematic methods exist for inverting matrices and will

be discussed in the next chapter. For now, use Mathcad if it is available to you.

4. Find AA�1. Is it true that AA�1 ¼ I? Does A commute with A�1?

5. Transpose A and B in Problem 1.

6. Transpose the product AB to find ðABÞT.
7. Find the product ATBT; compare it with the transpose of the product from

Problem 6. Deduce a rule for ATBT.

8. Is the matrix Q conformable to multiplication into its own transpose? What

about QTQ? What is the dimension of QQT? What is the dimension of QTQ?

Q ¼
p q

r s

t u

0
@

1
A

9. The problem of a mass suspended by a spring from another mass suspended by

another spring, attached to a stationary point (Kreyszig, 1989, p. 159ff) yields

the matrix equation

Ax ¼ lx

where x is a vector. For a certain combination of masses and springs,

A ¼ 5 3

3 5

� �
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Is l ¼ 7 an eigenvalue of the system? Is l ¼ 8 an eigenvalue of the system?

There is another eigenvalue. What is it?

10. The transpose of
�
x
y

�
is x yð Þ. Carry out the multiplication

x yð Þ 5 4

4 5

� �
x

y

� �

11. The eigenvector matrix for a p=4 rotation is

X ¼ 1ffiffiffi
2

p 1 1

�1 1

� �
Carry out the rotation

XT 5 4

4 5

� �
X

Linear Nonhomogeneous Simultaneous Equations

The problem of n linear independent nonhomogeneous equations in n real

unknowns

a11x1 þ a12x2 ¼ b1

a21x1 þ a22x2 ¼ b2
ð2-44Þ

is often encountered in an experimental context. We have taken two equations in

two unknowns for notational simplicity, but the equation set may be extended to the

n-variable case. Many coded programs have been published in FORTRAN (e.g.,

Carnahan and Luther, 1969; Isenhour and Jurs, 1979) for each of the algorithms

discussed here. Most are short and easily translated into other computer languages.

The problem of more than n equations in n real unknowns is called the multivariate

problem. Linearly dependent homogeneous equations frequently occur in some

branches of quantum mechanics. These problems will be treated later.

Linear independence implies that no equation in the set can be obtained by

multiplying any other equation in the set by a constant. The n� n matrix populated

by n2 elements aij

A ¼ a11 a12
a21 a22

� �
ð2-45Þ

is called the coefficient matrix. For the set to be linearly independent, the rank of A

must be n. An ordered set of numbers is a vector; hence the ordered number pair

x ¼ � x1
x2

�
is called the solution vector or solution set and the ordered set of constants
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b ¼ � b1
b2

�
is called the constant vector. I like the term nonhomogeneous vector,

because existence of any nonzero element bi causes the equation set to be

nonhomogeneous. A convenient term is the b vector. To be conformable for

multiplication by a matrix, the dimension of a row vector must be the same as

the column dimension of the matrix. A column vector must have the same

dimension as the row dimension of the matrix.

Designating the two vectors and one matrix just defined by boldface letters, the

set of equations (2-44) is

Ax ¼ b ð2-46Þ
Equation (2-46) is a matrix equation because vectors x and b are properly regarded

as one-column matrices. Vectors are often differentiated from matrices by writing

them as lower case letters.

Multiplication by the rules of matrix algebra produces equation set (2-44) from

Eq. (2-46), demonstrating their equivalence. Equation (2-46) is an economical way

of expressing Eqs. (2-44), especially where n is large, but it is more than that:

Systematic methods of solving Eqs. (2-44) really depend on the properties of

the coefficient matrix and on what we can do with it. For example, if the set of

Eqs. (2-44) is linearly dependent, A is singular, which means, among other things,

that its determinant is zero and it has no inverse A�1. In practical terms, this means

that no unique solution set exists for Eqs. (2-44). We already knew that, but less

obvious operations on Eqs. (2-44) such as triangularization and diagonalization can

be more easily visualized and programmed in terms of operations on the coefficient

matrix A than in terms of the entire set.

Exercise 2-13

Show that a vector in a plane can be unambiguously represented by an ordered number

pair and hence that any ordered number pair can be regarded as a vector.

Solution 2-13

Consider a vector as an arrow in two-dimensional space. Now superimpose x – y

coordinates on the 2-space, arbitrarily placing the origin on the ‘‘tail’’of the arrow.

The vector in Fig. 2-2 happens to fall in the fourth quadrant as drawn. The number pair

giving the point that coincides with the tip of the arrow gives its magnitude and direction

relative to the coordinate system chosen. Magnitude and direction are all that you can

know about a vector; hence it is completely defined by the number pair ð5;�1Þ.
In general, a vector in an n-space can be represented by an n-tuple of numbers; for

example, a vector in 3-space can be represented as a number triplet.

The determinant having the same form as matrix A,

det A ¼ a11 a12
a21 a22

����
����
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is not the same as A, because a matrix is an operator and a determinant is a scalar;

a matrix is irreducible but a determinant can, if it satisfies some restrictions,

be written as a single number.

det A ¼ a11 a12
a21 a22

����
���� ¼ a11a22 � a12a21

Algorithms

An algorithm is a recipe for solving a computational problem. It gives the general

approach but does not go into specific detail. Although there are many algorithms

for simultaneous equation solving in the literature, they can be separated into two

classes: elimination and iterative substitution. Elimination methods are closed

methods; in principle, they are capable of infinite accuracy. Iterative methods

converge on the solution set, and so, strictly speaking, they are never more than

approximations. In practice, the distinction is not so great as it might seem, because

iterative approximations can be made highly self-consistent, that is, nearly identical

from one iteration to the next, and closed elimination methods suffer the same

machine word-size limitations that prevent infinite accuracy in any fairly involved

computer procedure.

Gaussian Elimination. In the most elementary use of Gaussian elimination, the

first of a pair of simultaneous equations is multiplied by a constant so as to make

one of its coefficients equal to the corresponding coefficient in the second equation.

Subtraction eliminates one term in the second equation, permitting solution of the

equation pair.

Solving several equations by the method of Gaussian elimination, one might

divide the first equation by a11 , obtaining 1 in the a11 position. Multiplying a21 into

the first equation makes a11 ¼ a21. Now subtracting the first equation from the

second, a zero is produced in the a21 position. The same thing can be done to

produce a zero in the a31 position and so on, until the first column of the coefficient

matrix is filled with zeros except for the a11 position.

y

x

(5, –1) 
Figure 2-2 AVector in

Two-Dimensional x-y Space.
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Attacking the a22 position in the same way, but leaving the first horizontal row of

the coefficient matrix alone, yields a matrix with zeros in the first two columns

except for the triangle

a11 a12 a13 � � �
0 a22 a23 � � �
0 0 a33 � � �
..
. ..

. ..
. . .

.

0
BBB@

1
CCCA

This is continued n� 1 times until the entire coefficient matrix has been converted

to an upper triangular matrix, that is, a matrix with only zeros below the principal

diagonal. The b vector is operated on with exactly the same sequence of operations

as the coefficient matrix. The last equation at the very bottom of the triangle,

annxn ¼ bn, is one equation in one unknown. It can be solved for xn, which is back-

substituted into the equation above it to obtain xn�1 and so on, until the entire

solution set has been generated.

Exercise 2-14

In Exercise 2-8, we obtained the least equation of the matrix

A ¼ 2 1

1 3

� �

Solve the simultaneous equation set by Gaussian elimination

2xþ y ¼ 4

xþ 3y ¼ 7

Note that the matrix from Exercise 2-8 is the matrix of coefficients in this simultaneous

equation set. Note also the similarity in method between finding the least equation and

Gaussian elimination.

Solution 2-14

The triangular matrix AG resulting from Gaussian elimination is

AG ¼ 1 0:5
2:5

� �

In the process of obtaining the upper triangular matrix, the nonhomogeneous vector has

been transformed to
�
2
5

�
. The bottom equation of Ax ¼ b

xþ 0:5y ¼ 2

2:5y ¼ 5
ð2-47Þ
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yields y ¼ 2. Back-substitution into the top equation yields x ¼ 1. The solution set, as one

could have seen by inspection, is
�
1
2

�
. Mathcad, after the matrix A and the vector b have

been defined by using the full colon keystroke, solves the problem using the lsolve

command

A :¼ 2 1

1 3

� �
b :¼ 4

7

� �

lsolveðA; bÞ ¼ 1

2

� �

Exercise 2-15

Write a program in BASIC for solving linear nonhomogeneous simultaneous equations by

Gaussian elimination and test it by solving the equation set in Exercise 2-13.

In the computer algorithm, division by the diagonal element, multiplication, and

subtraction are usually carried out at the same time on each target element in the

coefficient matrix, leading to some term like ajk � aik
� aji
aii

�
. Next, the same three

combined operations are carried out on the elements of the b vector. The arithmetic

statements are simple, as is the procedure for back-substitution. The trick in writing

a successful Gaussian elimination program is in constructing a looping structure

and keeping the variable indices straight so that the right operations are being

carried out on the right elements in the right sequence.

Gauss–Jordan Elimination. It is possible to continue the elimination process to

remove nonzero elements above the principal diagonal, leaving only aii 6¼ 0 in the

coefficient matrix. This extension of the Gaussian elimination method is called

the Gauss–Jordan method. By exchanging columns (which does not change the

solution set) one can switch the largest element in each row of the coefficient matrix

into the pivotal position aii, and most Gauss–Jordan programs do this. Once the

coefficient matrix has been completely diagonalized so that the aii are the only

nonzero elements, and the same operations have been carried out on the b vector,

the original system of n equations in n unknowns has been reduced to n equations,

each in one unknown. The solution set follows routinely.

Exercise 2-16

Extend the matrix triangularization procedure in Exercise 2-14 by the Gauss–Jordan

procedure to obtain the fully diagonalized matrix
�
1 0
0 0:5

�
and the b vector

�
1
1

�
. The

solution set follows routinely.

By Cramer’s rule, each solution of Eqs. (2-44) is given as the ratio of

determinants

xi ¼ Di

D
ð2-48Þ
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where D is the determinant of the coefficients aij and Di is a similar determinant in

which the ith column has been replaced by the b vector. The method is open-ended,

that is, it can be applied to any number of equations containing the same number of

unknowns, resulting in nþ 1 determinants of dimension n� n.

Exercise 2-17

Solve the equation set of Eqs. (2-44) using Cramer’s rule.

Although apparently quite different from the Gauss and Gauss–Jordan methods,

it turns out that the most efficient method of reducing large determinants is

mathematically equivalent to Gaussian elimination. As far as the computer

programming is concerned, the method of Cramer’s rule is only a variant on the

Gaussian elimination method. It is slower because it requires evaluation of several

determinants rather than triangularization or diagonalization of one matrix; hence it

is not favored, except where the determinants are needed for something else.

Determinants have one property that is very important in what will follow. If a row

is exchanged with another row or a column is exchanged with another column, the

determinant changes sign.

Exercise 2-18

Verify the preceding statement for the determinant

det M ¼ 1 2

3 4

����
����

Solution 2-18

1 2

3 4

����
���� ¼ 4� 6 ¼ �2

2 1

4 3

����
���� ¼ 6� 4 ¼ 2

The Gauss–Seidel Iterative Method. The Gauss-Seidel iterative method uses

substitution in a way that is well suited to machine computation and is quite easy to

code. One guesses a solution for x1 in Eqs. (2-44)

a11x1 þ a12x2 ¼ b1

a21x1 þ a22x2 ¼ b2
ð2-49Þ

and substitutes this guess into the first equation, which leads to a solution for x2.

The solution is wrong, of course, because x1 was only a guess, but, when substituted

into the second equation, it gives a solution for x1. That solution is also wrong, but,

under some circumstances, it is less wrong than the original guess. The new

50 COMPUTATIONAL CHEMISTRY USING THE PC



approximation to x1 is substituted to obtain a new x2 and so on in an iterative loop,

until self-consistency is obtained within some small predetermined limit.

The drawback of the Gauss–Seidel method is that the iterative series does not

always converge. Nonconvergence can be spotted by printing the approximate

solution on each iteration. A favorable condition for convergence is dominance of

the principal diagonal. Some Gauss–Seidel programs arrange the rows and columns

of the coefficient matrix so that this condition is, insofar as possible, satisfied. A

more detailed discussion of convergence is given in advanced texts (Rice, 1983;

Norris, 1981).

Matrix Inversion and Diagonalization

Looking at the matrix equation Ax ¼ b, one would be tempted to divide both sides

by matrix A to obtain the solution set x¼ b=A. Unfortunately, division by a matrix

is not defined, but for some matrices, including nonsingular coefficient matrices, the

inverse of A is defined.

The unit matrix, I, with aii ¼ 1 and aij ¼ 0 for i 6¼ j, plays the same role in

matrix algebra that the number 1 plays in ordinary algebra. In ordinary algebra, we

can perform an operation on any number, say 5, to reduce it to 1 (divide by 5). If we

do the same operation on 1, we obtain the inverse of 5, namely, 1/5. Analogously, in

matrix algebra, if we carry out a series of operations on A to reduce it to the unit

matrix and carry out the same series of operations on the unit matrix itself, we

obtain the inverse of the original matrix A�1.

One series of mathematical operations that may be carried out on the coefficient

matrix to diagonalize it is the Gauss–Jordan procedure. If each row is then divided

by aij, the unit matrix is obtained. Generally, A and the unit matrix are subjected to

identical row operations such that as A is reduced to I, I is simultaneously

converted to A�1. The computer program written to do this is essentially a

Gauss–Jordan program as far as coding and machine considerations are concerned

(Isenhour and Jurs, 1971). Alternatively, both reduction of A to I and conversion of

I to A�1 may be done by the Gauss–Seidel iterative method (Noggle, 1985).

The attractive feature in matrix inversion is seen by premultiplying both sides of

Ax ¼ b by A�1,

A�1Ax ¼ A�1b ¼ Ix ¼ x ¼ A�1b ð2-50Þ

This means that once A�1 is known, it can be multiplied into several b vectors to

generate a solution set x ¼ A�1b for each b vector. It is easier and faster to multiply

a matrix into a vector than it is to solve a set of simultaneous equations over and

over for the same coefficient matrix but different b vectors.

Exercise 2-19

Invert the matrix in Exercise 2-8 by row operations.
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Solution 2-19

Place the original coefficient matrix next to the unit matrix. Divide row 1 by 2 and

subtract the result from row 2. This is a linear operation, and it does not change the

solution set.

2 1 1 0

1 3 0 1

� �
) 1 1

2
1
2

0

0 5
2

� 1
2

1

 !

This gives you a zero in the 2,1 position of the original matrix, which is one step along the

way of diagonalization. Continue with the necessary operations to diagonalize the

coefficient matrix and at the same time perform the same operations on the adjacent

unit matrix. On completion of this stepwise procedure, you have the unit matrix on the left

and some matrix other than the unit matrix on the right.

1 0 z11 z12
0 1 z21 z22

� �

Show that the matrix on the right, Z, is the inverse of the original matrix A by multiplying

it into A to find ZA ¼ I. Now generate the solution set to the equations for which A is the

coefficient matrix by multiplying Z (which is A�1) into the nonhomogeneous vector to

obtain the solution set {1, 2}.

COMPUTER PROJECT 2-1 j Simultaneous Spectrophotometric Analysis

A spectrophotometric problem in simultaneous analysis (Ewing, 1985) is taken

from the original research of Weissler (1945), who reacted hydrogen peroxide

with Mo, Ti, and V ions in the same solution to produce compounds that absorb

light strongly in overlapping peaks with absorbances at 330, 410, and 460 nm,

respectively as shown in (Fig. 2-3).

Wavelength

320 340 360 380 400 420 440 460 480

A
bs

or
ba

nc
e
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0.7

Figure 2-3 Visible Absorption Spectra of Peroxide Complexes of Mo, Ti, and V.

52 COMPUTATIONAL CHEMISTRY USING THE PC



The absorbance A of dissolved complex is given by Beer’s law

A ¼ abc ð2-51Þ

where a is the absorptivity, a function of wavelength, which is characteristic of the

complex; b is the length of the light path through the absorbing solution in

centimeters; and c is the concentration of the absorbing species in grams per liter.

If more than one complex is present, the absorbance at any selected wavelength is

the sum of contributions of each constituent.

Individual solutions of Mo, Ti, and V ions were complexed by hydrogen

peroxide, and each spectrum in the visible region was taken with a 1.00-cm cell,

with the results shown in Fig. 2-3. The absorbance of solutions containing a single

complex was recorded at one of the wavelengths shown. The remaining two

complexes were measured at the same wavelength, yielding three measurements.

This was repeated with the other two complexes, each at its selected wavelength,

yielding a total of nine measurements. The concentrations of the metal complex

solutions were all the same: 40.0 mg L�1.

The absorbance table at l for each of the metal complexes constitutes a matrix

with rows of absorbances, at one wavelength, of Mo, Ti, and V complexes, in that

order. Each column comprises absorbances for one metal complex at 330, 410, and

460 nm, in that order:

C ¼
0:416 0:130 0:000
0:048 0:608 0:148
0:002 0:410 0:200

0
@

1
A ð2-52Þ

Dividing each entry in the table by 0.040 (to convert C to units of L g�1 cm�1)

yields the absorptivity matrix

A ¼
10:4 3:25 0:00
1:20 15:2 3:70
0:050 10:25 5:00

0
@

1
A ð2-53Þ

Notice that the matrix has been arranged so that it is as nearly diagonal dominant as

the data permit.

The Problem. An unknown solution containing Mo, Ti, and V ions was treated

with hydrogen peroxide, and its absorbance was determined with a 1.00-cm cell at

the three wavelengths, in the same order (lowest to highest), that were used to

generate the absorbance matrix for the single complexes. The absorbance of the

unknown solution at the three wavelengths was 0.284, 0.857, and 0.718. The

ordered set of absorbances of any mixture of the complexes constitutes a b vector,

in this case, b ¼ f0:284; 0:857; 0:718g where the brackets {} indicate a column

vector written horizontally to save space. A set of simultaneous equations results.

Taking M, T, and V to be the concentrations of the three metals involved, the
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unknown concentration vector c ¼ fM; T ;Vg can be obtained by solving the

simultaneous equation set

a1MM þ a1TT ¼ 0:284

a2MM þ a2TT þ a2VV ¼ 0:857

a3MM þ a3TT þ a3VV ¼ 0:718

ð2-54Þ

where the third term in the first equation is missing because a1V ¼ 0. Equation set

(2-54) is the same as the matrix equation

ac ¼ b ð2-55Þ

where a is the absorptivity matrix, b is the nonhomogeneous vector, and c is the

solution vector of this equation set (a vector of concentrations). The light path was

1.00 cm, so it drops out of the calculation. The notation [M], etc. is not used.

Rather, this notation is reserved for concentrations in units of moles per liter.

Procedure. Write a program for solving simultaneous equations by the Gaussian

elimination method and enter the absorptivity matrix above to solve Eqs. (2-

51). Set up and solve the problem resulting from a new set of experimental

observations on a new unknown solution leading to the nonhomogeneous vector

b ¼ f0:327; 0:810; 0:673g.
Write an iterative program for Gauss–Seidel solution of these two problems to

three digits of self–consistency, that is, answers that agree with each other to three

significant digits or better. Do the same thing for five–digit self-consistency. Write a

counter (for example, I ¼ Iþ 1 on each iteration) into each program to determine

how many iterations each program takes. Note that, although you can obtain

five digits in your answer, only three of them are significant digits because the

experimental data going into the calculation have only three significant digits.

Even this number of significant digits is open to debate. Do we really know l to

an accuracy of �1 nm? Does it matter for the relatively flat peaks in Fig. 2-3? What

about a2M ¼ 0:048? Is it better to report the concentration vector to two significant

digits? Discuss these questions in your report.

COMPUTER PROJECT 2-2 j Gauss–Seidel Iteration:

Mass Spectroscopy

The purpose of this project is to gain familiarity with the strengths and limitations

of the Gauss–Seidel iterative method (program QGSEID) of solving simultaneous

equations.

The Problem. (a) Solve the prototypical equations

xþ y ¼ 3

xþ 2y ¼ 5
ð2-56Þ
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by the Gauss–Seidel iterative method. How many iterations are necessary to reach a

self-consistent solution set?

(b) Try to solve the set

xþ 2y ¼ 5

3xþ y ¼ 5
ð2-57Þ

Reverse the order of the equations

3xþ y ¼ 5

xþ 2y ¼ 5
ð2-58Þ

and try again. Comment on the results of this experiment in relation to the diagonal

dominance of the coefficient matrix. Is the first set linearly dependent? Conver-

gence of the Gauss–Seidel method is guaranteed if the sum of the off-diagonal

elements in each column is less than the diagonal element in that column.

Convergence varies from one system to another.

Solve the same two problems with Mathcad. Is there a noticeable difference

between the two sets? Mathcad uses a variant on the Gaussian substitution method

called LU Factorization (Kreyzig, 1988).

(c) Solve the set

2xþ y ¼ 1

4xþ 2:01y ¼ 2
ð2-59Þ

This set is said to be ill-conditioned because the second equation is almost an exact

multiple of the first. The matrix of coefficients is almost singular.

(d) An example similar to Computer Project 2-1 involves quantitative analysis

by mass spectrometry of four cyclic hydrocarbons (Isenhour and Jurs, 1985). The

4� 4 matrix of sensitivity coefficients (analogous to absorptivities) has as its

columns ethylcyclopentane (Etcy), cyclohexane (Cy6), cycloheptane (Cy7), and

methylcyclohexane (Mecy), at mass-to-charge ratios (m/e) of 69, 83, 84, and 98,

respectively. Each m/e value constitutes a row; each entry in a given row represents

the sensitivity coefficient at a specific m/e for the designated hydrocarbon.

Etcy Cy6 Cy7 Mecy

69 121.0 9.35 1.38 20.2

83 22.4 4.61 74.9 0.0

84 27.1 20.7 1.30 32.8

98 23.0 100.0 6.57 43.8

The peak at m=e ¼ 98 is taken as the arbitrary standard. The height of the other

peaks is measured relative to it. Once this matrix has been established, ordered sets

of mass spectral peak heights at m=e ¼ 69, 83, 84, and 98 constitute the experi-

mental b vector for an unknown mixture that contains or may contain the four
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hydrocarbons in the standardization set. The solution vectors are ordered sets of

relative molar concentrations of the components.

(e) Solve for the mol fraction Xi ¼ ni=
P

ni for each of the four components,

given the experimental vector b ¼ f84:4; 58:8; 47:2; 100:0g. Solve this problem

with Mathcad and as many of the BASIC programs as you have written for

simultaneous equations (Gaussian elimination, etc.). Comment on the relative

merits of the methods for the problem. Try rearranging the rows of the coefficient

matrix and b vector to achieve diagonal dominance.

COMPUTER PROJECT 2-3 j Bond Enthalpies of Hydrocarbons

Derivation of bond enthalpies from thermochemical data involves a system of

simultaneous equations in which the sum of unknown bond enthalpies, each

multiplied by the number of times the bond appears in a given molecule, is set

equal to the enthalpy of atomization of that molecule (Atkins, 1998). Taking a

number of molecules equal to the number of bond enthalpies to be determined, one

can generate an n� n set of equations in which the matrix of coefficients is

populated by the (integral) number of bonds in the molecule and the set of n

atomization enthalpies in the b vector. (Obviously, each bond must appear at least

once in the set.)

Carrying out this procedure for propane and butane, CH3��CH2��CH3 and

CH3��CH2��CH2��CH3, yields the bond matrix and enthalpies of atomization:

A ¼ 2 8

3 10

� �
b ¼ 3994

5166

� �

The bond matrix expresses 2 C��C bonds plus 8 C��H bonds for propane and 3 C��C
bonds plus 10 C��H bonds for n-butane. Each enthalpy of atomization is obtained

by subtracting the enthalpy of formation of the alkane from the sum of atomic

atomization enthalpies (C: 716; H: 218 kJ mol�1) for that molecule. For example,

the molecular atomization enthalpy of propane is 3ð716Þ þ 8ð218Þ � ð�104Þ ¼
3996 kJmol�1. Enthalpies of formation are available from Pedley et al. (1986) or

on-line at www.webbook.nist.gov.

Procedure. Run one or more simultaneous equation programs to determine the

C��C and C��H bond energies and interpret the results. The error vector is the vector

of calculated values minus the vector of bond enthalpies taken as ‘‘true’’ from an

accepted source. Calculate the error vector using a standard source of bond

enthalpies (e.g., Laidler and Meiser, 1999 or Atkins, 1994). Expand the method

for 2-butene ½�f H
298 (2-butene)¼�11 kJ mol�1� and so obtain the C��H, C��C,

and C����C bond enthalpies.

Solve the same problem for propane and isobutane (2-methylpropane). The bond

matrix is the same as it is for n-butane, but the enthalpy of formation is somewhat

different ½�f H
298 (n-butane)¼�127.1 kJ mol�1 vs. �f H

298 (isobutane)¼�134.2

kJ mol�1�, which must necessarily lead to different bond enthalpies. Benson has

treated this problem in great detail (Benson and Cohen, 1998; Benson, 1976) and
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has developed extensive tables of group additivity values constructed on the same

principle as bond energies. For example, Benson, in seeking group additivity values

for different kinds of CHn groups defines primary P, secondary S, tertiary T, and

quaternary Q carbons and then sets up the simultaneous equations to obtain

energetic contributions for P, S, T, and Q.

�f H
298ðethaneÞ ¼ �83:81 ¼ 2P

�f H
298ðpropaneÞ ¼ �104:7 ¼ 2Pþ S

�f H
298ðisobutaneÞ ¼ �134:2 ¼ 3Pþ T

�f H
298ðneopentaneÞ ¼ �168:1 ¼ 4Pþ Q

The b vector in this equation set has been converted from kilocalories per mole

(Benson and Cohen, 1998) to kilojoules per mol. Solve these simultaneous

equations to obtain the energetic contributions for P, S, T, and Q.

Using these group values, predict�f H
298 isooctane (2,2,3-trimethylpentane) and

tetramethylbutane. How do these values compare with the experimental values

(�224:1� 1:3 and �225:9� 1:9 kJmol�1, respectively)? What is the percent

deviation from the experimental value in each case?

A variant on this procedure produces a first approximation to the molecular

mechanics (MM) heat parameters (Chapters 4 and 5) for C��C and C��H. Instead of

atomization energies, the enthalpies of formation of propane and butane (�25.02

and �30.02 kcal mol�1) are put directly into the b vector. The results (2.51 kcal

mol�1 and �3.76 kcal mol�1) are not very good approximations to the heat

parameters actually used (2.45 kcal mol�1 and �4.59 kcal mol�1) because of other

factors to be taken up later, but the calculation illustrates the method and there is

rough agreement.

Our results are in very good agreement with Benson’s simpler bond additivity

values (2.5 kcal mol�1 and �3.75 kcal mol�1; Benson and Cohen, 1998), as indeed

they must be because they were obtained from the same set of experimental

enthalpies of formation. Note that many applications in thermochemistry use

energy units of kilocalories per mole, where 1.000 kcal mol�1 ¼ 4.184 kJ mol�1.

PROBLEMS

1. Carry out the multiplication

a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A x1

x2
x3

0
@

1
A

2. Solve, by hand, by Mathcad, and with your QBASIC programs

xþ y ¼ 4

4x� 3y ¼ �1:5
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3. Solve

xþ 2y� zþ t ¼ 2

x� 2yþ z� 3t ¼ 6

2xþ yþ 2zþ t ¼ �4

3xþ 3yþ z� 2t ¼ 10

4. Solve, using Cramer’s rule,

x sin yþ y cos y ¼ x0

�cos yþ y sin y ¼ y0

5. Find the inverse of

�:5 3=2 0

�3=2 �:5 0

0 0 1

0
@

1
A

6. Find the determinant

det A ¼
2 1 0

1 0 1

3 3 2

������
������

7. Exchange any two columns of the determinant in the previous problem and

evaluate the new determinant. Exchange any two rows of the determinant in the

previous problem and evaluate the new determinant. Does the rule of Exercise

2-17 hold?

8. Find A2 given that

A ¼ 0 1

0 0

� �
Does this answer seem surprising to you? Comment on it.

9. What is the atomization enthalpy of 2.00 mol of C and 3.00 mol of H2? (See

Computer Project 2-3.)

10. What is the atomization enthalpy of 1.00 mol of C2H6, ethane? The enthalpy of

formation of ethane is �83:8� 0:4 kJmol�1.

11. If the C��H bond enthalpy is 413 kJ mol�1, what is the C��C bond enthalpy?

12. Determine the molecular mechanics heat parameters for C��C and C��H using

the enthalpies of formation of n-butane and n-pentane, which are �30.02 and

�35.11 kcal mol�1 respectively.

13. Using the heat parameters from Problem 12, calculate �f H
298 of ethane. The

experimental value is �83:8� 0:4 kJmol�1.

58 COMPUTATIONAL CHEMISTRY USING THE PC



C H A P T E R

3
Curve Fitting

A straight line drawn by eye through a scattered set of experimental points,

presumed to represent a linear function, is not an acceptable representation of

the data set. Many computer programs exist that fit analytical functions to data

points by some statistical principle that avoids the subjectivity of visual curve

fitting. Any set of experimental data points can be fit more or less well by an

analytical function. One must select the function and then use routine curve fitting

procedures to generate the analytical form of the function from the experimental

observations. Statistical parameters generated in the fitting process tell us how good

the fit is. Subjectivity has not been completely excluded from the process because

we usually select the desired analytical function on subjective grounds like

simplicity or conformity to some theory we want to test.

In this chapter, we shall use the principle of least squares to generate the

equation of a unique curve for any given set of x-y pairs of data points. The curve so

obtained is the best fit to the points subject to

1. The assumption of an analytical form (straight line, quadratic, etc.) and

2. The assumption that the deviations are randomly distributed about the

analytical form.

We shall begin with the simplest case of a linear function passing through the

origin to introduce the method and set up the ground rules. The more complicated
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case of a linear function not passing through the origin will be solved by a method

that is general. The method will be extended to nonlinear functions and multivariate

functions.

Information Loss

A data set {x; y} can be represented in three ways: as a tabular collection of

measurements, as a graph, or as an analytical function y ¼ f ðxÞ. In the process of

reducing a tabular collection of results to its analytical form, some information is

lost. Although y ¼ f ðxÞ gives us the dependence of y on x, we no longer know

where the particular measurement yi at xi is. That information has been lost. Often,

selection of the form in which experimental results will be presented depends on

how (or whether) information loss influences the conclusions we seek to reach.

The Method of Least Squares

We have already found that the probability function governing observation of a

single event xi from among a continuous random distribution of possible events x

having a population mean m and a population standard deviation s is

pðxiÞ / e� xi�mð Þ2=2s2 ð3-1Þ
The probability of observing a distribution of events requires that event x1 (with

probability p1) occur, and x2 (with probability p2) occur, and so on. The probability

of observing events, x1; x2; x3; . . . ; xnð Þ, is the simultaneous or sequential prob-

ability of observing all events in the distribution occurring once, that is, the product

of the individual probabilities:

p x1 and x2 and x3 and . . . xnð Þ ¼ p x1ð Þp x2ð Þp x3ð Þ . . . p xnð Þ ¼
Yn
i¼1

p xið Þ

Yn
i¼1

p xið Þ /
Yn
i¼1

e� xi�mð Þ2=2s2

ð3-2Þ

By the nature of exponential numbers, eaeb ¼ eaþb, so

Yn
i¼1

p xið Þ / e�
Pn

i¼ 1
xi�mð Þ2=2s2 ð3-3Þ

Just as e�x takes its maximum value when x is at a minimum, the right side of

proportion (3-3) is a maximum when its exponent is a minimum. To minimize a

fraction with a constant denominator, one minimizes the numerator

Xn
i¼ 1

xi � mð Þ2 ¼ a minimum ð3-4Þ
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In so doing, we obtain the condition of maximum probability (or, more properly,

minimum probable prediction error) for the entire distribution of events, that is, the

most probable distribution. The minimization condition [condition (3-4)] requires

that the sum of squares of the differences between m and all of the values xi be

simultaneously as small as possible. We cannot change the xi, which are experi-

mental measurements, so the problem becomes one of selecting the value of m that

best satisfies condition (3-4). It is reasonable to suppose that m, subject to the

minimization condition, will be the arithmetic mean, �xx ¼ ðPn
i¼1 xiÞ=n, provided that

the deviations are random, that is, that the distribution is Gaussian.

This method, because it involves minimizing the sum of squares of the

deviations xi � m, is called the method of least squares. We have encountered the

principle before in our discussion of the most probable velocity of an individual

particle (atom or molecule), given a Gaussian distribution of particle velocities. It is

very powerful, and we shall use it in a number of different settings to obtain the best

approximation to a data set of scalars (arithmetic mean), the best approximation to a

straight line, and the best approximation to parabolic and higher-order data sets of

two or more dimensions.

Exercise 3-1

For the simple data set xi ¼ 2; 3; 7; 8; 10 we have selected 5, 6, and 7 as possible values of

m. For which of these three is the sum of squared deviations from the data set a minimum?

Solution 3-1

The sum of squared deviations is least for m ¼ 6. Conventional calculation of the

arithmetic mean �xx ¼ ðPn
i¼1 xiÞ=n shows that it is also 6.

Least Squares Minimization

Clearly, proposing arbitrary candidates for m and selecting the one with the smallest

value of
Pn

i¼1 xi � mð Þ2 to find �xx is not very efficient, nor can it be readily

generalized. This is especially so because, even with a data set of integral numbers,

the arithmetic mean does not have to be an integer.

A systematic method of arriving at the best value of m is to find the minimum ofPn
i¼1 xi � mð Þ2 as a function of m. This is the point at which the first derivative is

zero

d

dm

Xn
i¼1

xi � mð Þ2 ¼ 0

The derivative of a sum is a sum of derivatives; hence,Xn
i¼1

d

dm
xi � mð Þ2 ¼ �

Xn
i¼1

2 xi � mð Þ ¼ 0
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or

�
Xn
i¼1

xi þ
Xn
i¼1

m ¼ 0

where m is called a minimization parameter because the procedure amounts to

selecting, from an infinite number of possible values, that m for which the sum of

squares of the deviations is a minimum. Because m is a constant summed over n

terms,
Pn

i¼1 m ¼ nm, whence

nm ¼
Xn
i¼1

xi

and we see that m is the arithmetic mean

m ¼
Pn

i¼1 xi

n
¼ �xx ð3-5Þ

which is the conclusion we reached earlier. We shall now look at some problems to

which the solution is not self-evident.

Linear Functions Passing Through the Origin

If the linear function through the origin y ¼ mx were obeyed with perfect precision

by an experimental data set {xi; yi}, we would have

mxi � yi ¼ 0

This is never the case for a real data set, which displays a deviation di for each data

point owing to experimental error. For the real case,

mxi � yi ¼ di ð3-6Þ

If the experimental error is random, the method of least squares applies to analysis

of the set. Minimize the sum of squares of the deviations by differentiating with

respect to m,

d

dm

Xn
i¼1

d2i ¼
d

dm

Xn
i¼1

mxi � yið Þ2 ¼ 0 ð3-7Þ

which leads to

m ¼
Pn

i¼1 xiyiPn
i¼1 x

2
i

ð3-8Þ
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The slope of the linear function is the minimization parameter. It is the only thing

one can change to obtain a ‘‘better’’ fit to points for a line passing through the

origin. (It is NEVER permissible to ‘‘adjust’’ experimental points.) The slope

calculated by the least squares method is the ‘‘best’’ slope that can be obtained

under the assumptions. Once one knows the slope of a linear function passing

through the origin, one knows all that can be known about that function.

Exercise 3-2

Using a hand calculator, find the slope of the linear regression line that passes through the

origin and best satisfies the points

x 1:0 2:0 3:0 4:0 5:0
y 1:1 1:9 2:9 4:0 4:8

Solution 3-2

Scanning the data set, it is evident that the slope should be slightly less than 1.0.

X5
1

xiyi ¼ 53:6

X5
1

x2i ¼ 55:0

m ¼
Pn

i¼1 xiyiPn
i¼1 x

2
i

¼ 0:97

Linear Functions Not Passing Through the Origin

Deviations from a curve thought to be a straight line y ¼ mxþ b, not passing

through the origin (b 6¼ 0), are

mxi þ bð Þ � yi ¼ di ð3-9Þ
Note that m and b do not have subscripts because there is only one slope and one

intercept; they are the minimization parameters for the least squares function.

Now there are two minimization conditions

q
qb

Xn
i¼1

d2i ¼
q
qb

Xn
i¼1

mxi þ b� yið Þ2 ¼ 0 ð3-10aÞ

and

q
qm

Xn
i¼1

d2i ¼
q
qm

Xn
i¼1

mxi þ b� yið Þ2 ¼ 0 ð3-10bÞ
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which must be satisfied simultaneously. Carrying out the differentiation, one

obtains

Xn
i¼1

mxi þ
Xn
i¼1

b�
Xn
i¼1

yi ¼ 0 ð3-11aÞ

and

Xn
i¼1

mx2i þ
Xn
i¼1

bxi �
Xn
i¼1

xiyi ¼ 0 ð3-11bÞ

which are called the normal equations. Rewriting them as

nbþ
Xn
i¼1

xim ¼
Xn
i¼1

yi ð3-12aÞ

Xn
i¼1

xibþ
Xn
i¼1

x2i m ¼
Xn
i¼1

xiyi ð3-12bÞ

makes it clear that the intercept and slope are the two elements in the solution

vector of a pair of simultaneous equations

n
Pn

i¼1 xiPn
i¼1 xi

Pn
i¼1 x

2
i

� �
b

m

� �
¼

Pn
i¼1 yiPn

i¼1 xiyi

� �
ð3-13Þ

The coefficient matrix and nonhomogeneous vector can be made up simply by

taking sums of the experimental results or the sums of squares or products of

results, all of which are real numbers readily calculated from the data set.

Solving the normal equations by Cramer’s rule leads to the solution set in

determinantal form

b ¼ Db

D
ð3-14aÞ

and

m ¼ Dm

D
ð3-14bÞ

or

b ¼
P

yi
P

x2i�
P

xiyi
P

yi

n
P

x2i �
	P

xi


2 ð3-15aÞ
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and

m ¼ n
P

xiyi �
P

xi
P

yi

n
P

x2i �
	P

xi


2 ð3-15bÞ

where the limits on the sums, i ¼ 1� n, have been dropped to simplify the

appearance of the equation. Equations (3-15) are in the form usually given in

elementary treatments of least squares data fitting in analytical and physical

chemistry laboratory texts.

Exercise 3-3

Find the slope and intercept of a straight line not passing through the origin of the data set

x 1:0 2:0 3:0 4:0 5:0
y 3:1 3:9 4:9 6:0 6:8

Solution 3-3

Using Mathcad, we regard the data set as two vectors x ¼ f1:0; 2:0; 3:0; 4:0; 5:0g and

y ¼ f3:1; 3:9; 4:9; 6:0; 6:8g. They are defined using the : keystroke for a 5� 1 matrix

x :¼

1

2

3

4

5

0
BBBBBB@

1
CCCCCCA y : ¼

3:1

3:9

4:9

6:0

6:8

0
BBBBBB@

1
CCCCCCA

slopeðx; yÞ ¼ 0:95

interceptðx; yÞ ¼ 2:09

One might have expected the same slope for this function as for the function

described in Exercise 3-2 because the y vector in this exercise is nothing but the y

vector in Exercise 3-2 with 2.0 added to each element. Calculating the slope and

intercept adds flexibility to the problem. Now the intercept that had been

constrained to 0.0 in Exercise 3-2 is free to move a little, giving a better fit to

the points. We find a slightly different slope and an intercept that is slightly

different from the anticipated 2.0. The slope and intercept for this exercise should

be reported as 0.95 and 2.1, retaining two significant figures.

If we go back and calculate the slope and intercept for the data set in Exercise 3-2

without the constraint that the line must pass through the origin, we get the

solution vector {0.95, 0.09} for a line parallel to the line in Exercise 3-3 and 2.0

units distant from it, as expected.

Quadratic Functions

Many experimental functions approach linearity but are not really linear. (Many

were historically thought to be linear until accurate experimental determinations
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showed some degree of nonlinearity.) Nearly linear behavior is often well

represented by a quadratic equation

y ¼ aþ bxþ cx2 ð3-16Þ
The least squares derivation for quadratics is the same as it was for linear equations

except that one more term is carried through the derivation and, of course, there are

three normal equations rather than two. Random deviations from a quadratic are

aþ bxi þ cx2i
� �� yi ¼ di ð3-17Þ

The minimization conditions are

q
qa

Xn
i¼1

d2i ¼ 0 ð3-18aÞ

q
qb

Xn
i¼1

d2i ¼ 0 ð3-18bÞ

q
qc

Xn
i¼1

d2i ¼ 0 ð3-18cÞ

which must be true simultaneously. Solution of these equations leads to the normal

equations

naþ b
X

xi þ c
X

x2i ¼
X

yi ð3-19aÞ
a
X

xi þ b
X

x2i þ c
X

x3i ¼
X

xiyi ð3-19bÞ
a
X

x2i þ b
X

x3i þ c
X

x4i ¼
X

x2i yi ð3-19cÞ

with the solution vector {a; b; c} and the nonhomogeneous vector {
P

yi;
P

xiyi;P
x2i yi}. The matrix form of the set of normal equations is

a
P

xi
P

x2iP
xi

P
x2i

P
x3iP

x2i
P

x3i
P

x4i

0
B@

1
CA

a

b

c

0
B@

1
CA ¼

P
yiP
xiyiP
x2i yi

0
B@

1
CA ð3-20Þ

or simply

Qs ¼ t ð3-21Þ

where the meaning of matrix Q and vectors s and t are evident from Eq. (3-20). A

general-purpose linear least squares program QLLSQ and a quadratic least squares

program QQLSQ can be downloaded from www.wiley.com/go/computational.
Others are available elsewhere (Carley and Morgan, 1989). The input format given

in QQLSQ is used to solve Exercise 3-4.
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Exercise 3-4

From the theory of the electrochemical cell, the potential in volts E of a silver-silver

chloride-hydrogen cell is related to the molarity m of HCl by the equation

E þ 2RT

F
lnm ¼ E
 þ 2:342RT

F
m1=2 ð3-22Þ

where R is the gas constant, F is the Faraday constant ð9:648� 104 coulombs mol�1Þ, and
T is 298.15 K. The silver-silver chloride half-cell potential E
 is of critical importance in

the theory of electrochemical cells and in the measurement of pH. (For a full treatment of this

problem, see Mc Quarrie and Simon, 1999.) We can measure E at known values of m, and it

would seem that simply solving Eq. (3-22) would lead to E
 . So it would, except for the

influence of nonideality on E. Interionic interference gives us an incorrect value of E
 at any
nonzero value ofm. But ifm is zero, there are no ions to give a voltage E. What dowe do now?

The way out of this dilemma is to make measurements at several (nonideal)

molarities m and extrapolate the results to a hypothetical value of E at m ¼ 0. In so

doing we have ‘‘extrapolated out’’ the nonideality because at m ¼ 0 all solutions

are ideal. Rather than ponder the philosophical meaning of a solution in which the

solute is not there, it is better to concentrate on the error due to interionic

interactions, which becomes smaller and smaller as the ions become more widely

separated. At the extrapolated value of m ¼ 0, ions have been moved to an infinite

distance where they cannot interact.

Plotting the left side of Eq. (3-22) as a function of m1=2 gives a curve with 2:342RT
F

as the slope and E
 as the intercept. Ionic interference causes this function to deviate
from linearity at m 6¼ 0, but the limiting (ideal) slope and intercept are approached

as m ! 0. Table 3-1 gives values of the left side of Eq. (3-22) as a function of m1=2.

The concentration axis is given as m1=2 in the corresponding Fig. 3-1 because there

are two ions present for eachmole of a 1-1 electrolyte and the concentration variable for

one ion is simply the square root of the concentration of both ions taken together.

The problem now is to find the best value of the intercept on the vertical axis. We

can do this by fitting the experimental points to a parabola.

Solution 3-4

TableCurve gives {.2225, .05621, �.06226} for a, b, and c of the quadratic fit, and

program QQLSQ gives f0:2225; 5:621� 10�2, and �6:226� 10�2 (note that the order

of terms is reversed in Output 3-4).

Table 3-1 The Left Side of Eq. 3-4 at Seven Values of m1=2

m1=2 E þ 2RT
F

lnm

.05670 .2256

.07496 .2263

.09559 .2273

.1158 .2282

.1601 .2300

.2322 .2322

.3519 .2346
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Output 3-4

Program QQLSQ

How many data pairs? 7

THE FOLLOWING DATA PAIRS WERE USED:

X Y YEXPECTED

.0567 .2256 .2255161

.07496 .2263 .2263927

.09559 .2273 .2273332

.1158 .2282 .2282032

.1601 .23 .2299322

.2322 .2322 .2322238

.3519 .2346 .2345989

THE EQUATION OF THE PARABOLA IS:

Y ¼ �6:225745E-02X��2þ ð5:620676E-02ÞXþ ð:2225293Þ
THE STANDARD DEVIATION OF Y VALUES IS 6.04448E-05

The two estimates for the first or a parameter of the parabolic fit are the intercepts on the

voltage axis of Fig. 3-1, so both procedures arrive at a standard potential of the silver-

silver chloride half-cell of 0.2225 V. The accepted modern value is 0.2223 V (Barrow, 1996).

Polynomials of Higher Degree

The form of the symmetric matrix of coefficients in Eq. 3-20 for the normal

equations of the quadratic is very regular, suggesting a simple expansion to higher-

degree equations. The coefficient matrix for a cubic fitting equation is a 4� 4

m1/2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

E
+

(2
R

T
/F

)ln
m

0.224

0.228

0.232

0.236

Figure 3-1 Voltage Measurements on a Silver-Silver Chloride, Hydrogen Cell at 298.15 K.

The contribution of the Standard Hydrogen Electrode is taken as zero by convention.
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matrix with x6i in the 4, 4 position, the fourth-degree equation has x8i in the 5, 5

position, and so on. It is routine (and tedious) to extend the method to higher

degrees. Frequently, the experimental data are not sufficiently accurate to support

higher-degree calculations and ‘‘differences’’ in fitting equations higher than the

fourth degree are artifacts of the calculation rather than features of the data set.

Statistical Criteria for Curve Fitting

Frequently in curve fitting problems, one has two curves that fit the data set more or

less well but they are so similar that it is difficult to decide which is the better curve

fit. Commercially available curve fitting programs (e.g., TableCurve,www.spss.com)

usually give many curves that fit the data (more or less well). The best of these are

often very close in their goodness of fit. One needs an objective statistical criterion

of this vague concept, ‘‘goodness of fit.’’

The essential criterion of goodness of fit is nothing more than the sum of squares

of deviations as in Eq. (3-4), although this simple fact may be obscured by

differences in notation and nomenclature. Starting with the simple case of

comparing the fit of straight lines to the same data set, the deviation in minimization

criterion (3-4) is referred to as the residual, ŷyi � yið Þ, which is the difference

between the ith experimental measurement yi and the value ŷyi that yi would have if

the fit were perfect. The definition yi � ŷyið Þ is also used (Jurs, 1996) because the

difference in sign is of no importance when we square the residual. Following Jurs’s

nomenclature and notation (Jurs, 1996), the sum of squares of residuals is thought

of as the sum of squares due to error, hence the notation SSE

SSE ¼
Xn
i¼1

ŷyi � yið Þ2 ¼
Xn
i¼1

yi � ŷyið Þ2 ð3-23aÞ

The differences between corresponding elements in ordered sets (vectors) in, for

example, columns 2 and 3 of output 3-4 give an ordered set of residuals. In this

example, the residual for the first data point is 0:2256� 0:2255161 ¼ 8:39� 10�5.

SSE is sometimes written

SSE ¼
Xn
i¼1

wi ŷyi � yið Þ2 ð3-23bÞ

where wi is a weighting factor used to give data points a greater or lesser weight

according to some system of estimated reliability. For example, if each data point

were the arithmetic mean of experimental results, we might make wi ¼ s2
0=s

2
i

where s2
o is the maximum variance in the set ðw0 ¼ 1Þ and all the other weighting

factors are greater than 1 (Wentworth, 2000). For simplicity, let us take wi ¼ 1 for

all data in what follows.
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The sum of squares of differences between points on the regression line ŷyi at xi
and the arithmetic mean �yy is called SSR

SSR ¼
Xn
i¼1

ŷyi � �yyð Þ2 ð3-24Þ

The total sum of squared deviations from the mean is

SST ¼
Xn
i¼1

yi � �yyð Þ2 ð3-25Þ

which is made up of two parts, one contribution due to the regression line and one

due to the residual or error

SST ¼ SSRþ SSE ð3-26Þ
Jurs defines a regression coefficient R as

R2 ¼ SSR

SST
ð3-27Þ

If the fit is very good, the residuals will be small, SST!SSR as SSE!0, hence

R2 ! 1:0. If SSE is a substantial part of SST (as it is for a poor curve fit)

SSR< SST and R2 < 1:0. In the limit as SSE becomes very large, R2 ! 0.

To reconcile this notation with the output from TableCurve, note that

R2 ¼ SSR

SST
¼ SST� SSE

SST
¼ 1� SSE

SST
ð3-28Þ

Now, making only the change in notation of SSM for SST to indicate the total

deviation from the mean and changing from upper to lower case r, we have

r2 ¼ 1� SSE

SSM
ð3-29Þ

which is the coefficient of determination as defined in TableCurve (TableCurve

User’s Manual, 1992). For an example of r2 calculated by TableCurve, see

Exercise 3-5.

Reliability of Fitted Parameters

For a specified mean and standard deviation the number of degrees of freedom for a

one-dimensional distribution (see sections on the least squares method and least

squares minimization) of n data is ðn� 1Þ. This is because, given m and s, for
n > 1 (say a half-dozen or more points), the first datum can have any value, the

second datum can have any value, and so on, up to n� 1. When we come to find the
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last data point, we have no freedom. There is only one value that will make m and s
come out right. If we select anything else, we violate the hypothesis of known m
and s.

The situation is similar for a linear curve fit, except that now the data set is two-

dimensional and the number of degrees of freedom is reduced to ðn� 2Þ. The
analogs of the one-dimensional variance s2 ¼ ðPn

i¼1 d
2
i Þ=ðn� 1Þ and the standard

deviation s are the mean square error

MSE ¼ SSE

n� 2
ð3-30Þ

and the standard deviation of the regression

s ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð3-31Þ

for the two-dimensional case.

If the data set is truly normal and the error in y is random about known values of

x, residuals will be distributed about the regression line according to a normal or

Gaussian distribution. If the distribution is anything else, one of the initial

hypotheses has failed. Either the error distribution is not random about the straight

line or y ¼ f ðxÞ is not linear.
If the matrix form of the fitting procedure is used to solve for the intercept and

slope of a straight line, Eq. (3-13)

n
Pn

i¼1 xiPn
i¼1 xi

Pn
i¼1 x

2
i

� �
b

m

� �
¼

Pn
i¼1 yiPn

i¼1 xiyi

� �
ð3-32Þ

yields

b

m

� �
¼ n

Pn
i¼1 xiPn

i¼1 xi
Pn

i¼1 x
2
i

� ��1 Pn
i¼1 yiPn
i¼1 xiyi

� �
ð3-33Þ

The variance of the regression times the diagonal elements of the inverse coefficient

matrix gives the variance of the intercept and slope,

s2b ¼ d11s
2 ð3-34aÞ

and

s2m ¼ d22s
2 ð3-34bÞ

which lead directly to the standard deviations of the intercept and slope, sb and sm.

Their standard deviations are given in TableCurve under the heading Std Error in

column 3, block 2 of the Numeric Summary output. We now have

y ¼ a� Std Errora þ bx� Std Errorb ð3-35Þ
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as the equation of our straight line fit. Further treatment, which we shall not go into

here, involves finding the t value for each parameter and establishing the confidence

limits at some confidence level, for example, 90%, 95%, or 99% (Rogers, 1983).

These limits are given in block 2 of the TableCurve output. The confidence level

can be specified in TableCurve by clicking the intervals button in the Review

Curve-Fit window. The default value is 95%.

Exercise 3-5

Fit a linear equation to the following data set and give the uncertainties of the slope and

intercept (Fig. 3-2).

x 0:400 0:800 1:20 1:60 2:00 2:40 2:80 3:20 3:60 4:00
y 2:79 3:82 4:75 4:85 5:55 6:71 7:81 8:12 9:31 9:65

Solution 3-5

Working the problem by the matrix method we get

b

m

� �
¼ 10 22

22 61:6

� ��1
63:36

164:804

� �

¼ 0:467 �0:167

�0:167 0:076

� �
63:36

164:804

� �
¼ 2:10

1:92

� �

Solved using the BASIC curve fitting program QLLSQ we get as a partial output block

10 POINTS, FIT WITH STD DEV OF THE REGRESSION .2842293

0 1 2 3 4 5

Y
 D

at
a

X Data

0

1

2

3

4

5

6

7

8

9

10

Figure 3-2 Data Set for Exercise 3-5.
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SLOPE¼1.925152 , Y INTERCEPT¼2.100666

sb ¼
ffiffiffiffiffiffiffiffiffiffi
d11s2

p
¼ 0:194

sm ¼
ffiffiffiffiffiffiffiffiffiffi
d22s2

p
¼ 0:078

TableCurve gives

TableCurve Output 3-5

Rank 3 Eqn 1 y¼ aþ bx

r2 Coef Det DF Adj r2 Fit Std Err F-value

0.9869616170 0.9832363647 0.2842291542 605.57301820

Parm Value Std Error t-value 95% Confidence Limits

a 2.100666667 0.194165477 10.81895043 1.651357072 2.549976262

b 1.925151515 0.078231500 24.60839325 1.744119520 2.106183510

The result of our analysis is that the data are fit by the straight line

y ¼ 2:10� 0:19þ 1:93� 0:08 x ð3-36Þ
Note that there are two equations with a higher rank than y ¼ aþ bx. They are the

exponential and power equations y ¼ aþ b expð�x=cÞ and y ¼ aþ bxc. There is little to

choose among the r2 values of these three curve fits, 0.9871, 0.9871, and 0.9870, so we

choose the simplest equation. Small differences in r2 values should not be counted too

heavily, and we should be wary of r2 values that look impressive. Note that Fig. 3-2 shows

substantial scatter despite the high r2 value. Use common sense and an aesthetic of

simplicity in choosing the best curve fit. As usual, the number of significant figures in the

final equation (3-36) is determined by the number of significant figures going into the

calculation (Fig. 3-2).

COMPUTER PROJECT 3-1 j Linear Curve Fitting: KF Solvation

Linear extrapolation of the experimental behavior of a real gas to zero pressure or a

solute to infinite dilution is often used as a technique to ‘‘get rid’’ of molecular or

ionic interactions so as to study some property of the molecule or ion to which these

interferences are considered extraneous. Emsley (1971) studied the heat (enthalpy)

of solutions of potassium fluoride KF and the monosolvated species KF�HOAc in

glacial acetic acid at several concentrations. A known weight of the anhydrous salt

KF was added to a known weight of glacial acetic acid in a Dewar flask fitted with a

heating coil, a stirrer, and a sensitive thermometer. The temperature change on each

addition was recorded. The heat capacity C of the flask and its contents was

determined by supplying a known amount of electrical energy Q to the flask and

noting the temperature rise �T in kelvins (K)

Qð joulesÞ ¼ C�T ð3-37Þ
The experiment was repeated for the solvated salt KF�HOAc, where the molecule of

solvation is acetic acid, HOAc. Some experimental results calculated from the

original paper are shown in Table 3-2:
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Procedure. Calculate the heats of solution of the two species, KF and KF�HOAc,

at each of the four given molalities from a knowledge of the heat capacity. Calculate

the enthalpy of solution per mole of solute �sol’nH
298 at each concentration. Find

the least squares curve fit and calculate the uncertainties � � � � for the function

�sol’n H
298 ¼ �sol’n H

298
0 � � � ��sol’nH

298
0
þðSLOPEÞM � � � �SLOPE ð3-38Þ

where M is the molality and �sol’nH
298
0 is the enthalpy of solution at infinite

dilution. Do this for each species, the anhydrous and the solvated fluoride. Record

the slopes and intercepts of both functions, SLOPE1 for KF and SLOPE2 for

KF�HOAc. Record the enthalpy changes and uncertainties, �sol’nH
298
0 � � � ��sol’nH

298
0

(KF) and �sol’nH
298
0 � � � ��sol’nH

298
0

(KF�HOAc). What are the units of SLOPE?

Read the article on the original research (Emsley, 1971) and include a

commentary on these results in your report for this experiment. Emsley claims

that the enthalpy of solution

KFðsÞ þ HOAcðlÞ ! KF �OAcHðsol’nÞ

is �sol’nH
298
0 ¼ �38:5 kJmol�1. What argument does he present to support this

claim?

COMPUTER PROJECT 3-2 j The Boltzmann Constant

An interesting historical application of the Boltzmann equation involves examina-

tion of the number density of very small spherical globules of latex suspended in

water. The particles are distributed in the potential gradient of the gravitational

field. If an arbitrary point in the suspension is selected, the number of particles N at

height h mm (1 mm¼ 10�6 m) above the reference point can be counted with a

magnifying lens. In one series of measurements, the number of particles per unit

volume of the suspension as a function of h was as shown in Table 3-3.

The Boltzmann distribution gives

N ¼ N0e
�mgh
kT ð3-39Þ

Table 3-2 Enthalpies of Solution �sol’nH
298 of KF and KF �HOAc in Glacial

Acetic Acid at 298 K

KF: C ¼ 4:168 kJ K�1

Molality 0.194 0.590 0.821 1.208

Temperature change, K 1.592 4.501 5.909 8.115

KF �HOAc: C ¼ 4:203 kJ K�1

Molality 0.280 0.504 0.910 1.190

Temperature Change, K �0.227 �0.432 �0.866 �1.189
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at constant temperature T, where m is the effective mass of the particle corrected for

the buoyancy of the supporting medium.

Statistical analysis of the data set is best done by ‘‘linearizing’’ the function

(Jurs, 1996), that is, by transforming it to a straight line of the form y ¼ aþ bx. In

the case of the Boltzmann distribution, because y ¼ aebx leads to ln y ¼ ln aþ bx,

we can take logarithms of both sides,

lnN ¼ lnN0 � mgh

kT
ð3-40Þ

whereupon the slope of lnN vs. h is � mgh
kT
, where g is the acceleration due to the

gravitational field and k is a universal constant now called Boltzmann’s constant

and denoted kB.

The supporting medium was water at 298 K ðr ¼ 0:99727Þ, and the density of

latex is 1.2049 g cm�3. The latex particles had an average radius of 2:12�
10�4 mm; hence, their effective mass corrected for buoyancy is their volume 4

3
p r3

times the density difference �r between latex and the supporting medium,

water

m ¼ nr ¼ ð4=3Þð2:12� 10�7 mÞ3ð1:2049� 0:99727Þ

This yields m ¼ 8:287� 10�18 kg.

Procedure. Compute the slope of the function by a linear least squares procedure

and obtain a value of Boltzmann’s constant. How many particles do you expect to

find 125 mm above the reference point? Take the uncertainty you have calculated for

the slope, as the uncertainty in kB. Is the modern value of kB ¼ 1:381� 10�23

within these error limits?

Having determined kB and knowing that the gas constant R ¼ 8:314 JK�1 from

macroscopic measurements on gases, determine Avogadro’s number L from the

relationship

R ¼ kBL ð3-41Þ

Calculate the % difference between L found by this method and the modern value of

6:022� 1023. Does this support the idea that the Boltzmann constant is the gas

constant per particle?

Table 3-3 The Number of Latex Particles at Various Heights in mm Above a

Reference Point

h=mm 0 50 70 90 100 150 200

N 977 453 293 219 176 69 28
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COMPUTER PROJECT 3-3 j The Ionization Energy of Hydrogen

The ionization energy for hydrogen is the minimum amount of energy that is

required to bring about the reaction

H ! Hþ þ e�

The ionization energy for hydrogen (or other hydrogen-like systems) can be found

from the Rydberg equation

�nn ¼ 1

l
¼ R

1

n21
� 1

n22

� �
ð3-42Þ

along with an accurate set of spectral data. Eq. (3-42) leads us to believe that both

the slope R and the intercept R of the linear function

�nn ¼ R� R
1

n22

� �
ð3-43Þ

are equal to the ionization energy which has n22 ¼ 1.

Procedure. Use Mathcad, QLLSQ, or TableCurve (or, preferably, all three) to

determine a value of the ionization energy of hydrogen from the wave numbers in

Table 3-4 taken from spectroscopic studies of the Lyman series of the hydrogen

spectrum where n1 ¼ 1.

Note that we are interested in n2, the atomic quantum number of the level to which

the electron ‘‘jumps’’ in a spectroscopic excitation. Use the results of this data

treatment to obtain a value of the Rydberg constant R. Compare the value you

obtain with an accepted value. Quote the source of the accepted value you use for

comparison in your report. What are the units of R? A conversion factor may be

necessary to obtain unit consistency. Express your value for the ionization energy

of H in units of hartrees (h), electron volts (eV), and kJ mol�1. We will need it

later.

Reliability of Fitted Polynomial Parameters

The method of finding uncertainty limits for linear equations can be generalized

to higher-order polynomials. The matrix method for finding the minimization

Table 3-4 Spectral Wavenumbers �vv for the Lyman Series of Hydrogen

n2 ¼ 2 3 4 5 6 7

n22 ¼ 4 9 16 25 36 49

�vv ¼ 82259 97492 102824 105292 106632 107440
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parameters for the polynomial of next higher order (second order), y ¼ axþ bx2

is

a
P

xi
P

x2iP
xi

P
x2i

P
x3iP

x2i
P

x3i
P

x4i

0
B@

1
CA a

b

c

0
@

1
A ¼

P
yiP
xiyiP
x2i yi

0
B@

1
CA ð3-44Þ

with the solution vector

a

b

c

0
@

1
A ¼

a
P

xi
P

x2iP
xi

P
x2i

P
x3iP

x2i
P

x3i
P

x4i

0
B@

1
CA

�1 P
yiP
xiyiP
x2i yi

0
B@

1
CA ð3-45Þ

The quadratic curve fit leads to a number of residuals equal to the number of points

in the data set. The sum of squares of residuals gives SSE by Eqs. (3-23) and MSE

by Eq. (3-30), except that now the number of degrees of freedom for n points is

n� 3

MSE ¼ SSE

n� 3
ð3-46Þ

MSE gives the standard deviation of the regression, s ¼ ffiffiffiffiffiffiffiffiffiffi
MSE

p
.

The uncertainties of the minimization parameters are calculated just as they were

for the linear case except that now there are three of them

sa ¼
ffiffiffiffiffiffiffiffiffiffi
d11s2

p
ð3-47aÞ

sb ¼
ffiffiffiffiffiffiffiffiffiffi
d22s2

p
ð3-47bÞ

and

sc ¼
ffiffiffiffiffiffiffiffiffiffi
d33s2

p
ð3-47cÞ

In contrast to the linear case, there are three degrees of freedom, but there is still

only one standard deviation of the regression, s. The reader has the opportunity to

try out these ideas in Computer Project 3-4.

COMPUTER PROJECT 3-4 j The Partial Molal Volume of ZnCl2
In general, the volume of a solution, say ZnCl2 in water, is dependent on the

number of moles ni of each of the components. For a binary solution,

V ¼ f ðn1; n2Þ ð3-48Þ
The change in volume dVon adding a small amount dn1 of water or dn2 of ZnCl2 is

dV ¼ qV
qn1

� �
dn1 þ qV

qn2

� �
dn2 ð3-49Þ
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where we stipulate that P and T are constant for the process and we adopt the usual

subscript convention, 1 for solvent and 2 for solute. If we specify 1 kg as the

amount of water, n2 is the molality of ZnCl2. We expect that the volume of the

solution will be greater than 1000 cm3 by the volume taken up by the ZnCl2. It may

seem reasonable to take the volume of one mole of ZnCl2 in the solid state Vm and

add it to 1000 cm3 to get the volume of a 1 molal solution. One-half the molar

volume of solute would, by this scheme, lead to the volume of a 0.5 molar solution

and so on. This does not work. The volume of 1000 g of water in the solution is not

exactly 1000 cm3, and it is dependent on the temperature. Nor are the volumes

additive. Indeed, some solutes cause contraction of the solution to less than

1000 cm3.

Interactions at the molecular or ionic level cause an expansion or contraction of

the solution so that, in general

V 6¼ 1000þ Vm ð3-50Þ

We define a partial molar volume �VVi such that

V ¼ n1�VV1 þ n2�VV2 ð3-51Þ

for a binary solution or, in general,

V ¼
XN
i¼1

ni�VVi ð3-52Þ

for a solution of N components.

It can be shown (Alberty, 1987) that

�VVi ¼ qV
qni

� �
nj

ð3-53Þ

where the subscript nj indicates that all components in the solution other than i are

held constant. If the solution is a binary solution of n2 moles of solute in 1 kg of

water, �VV2 is the partial molal volume of component 2. A partial molal volume is a

special case of the partial molar volume for 1 kg of solvent.

Procedure. A study on the partial molal volume of ZnCl2 solutions gave the

following data (Alberty, 1987)

g ZnCl2 per kg of H2O 20:00 60:00 100:00 140:00 180:00 200:00
density 1:0167 1:0532 1:0891 1:1275 1:1665 1:1866

Calculate the number of moles of ZnCl2 per kilogram of water in each solution (the

molality m). Calculate the volume V of solution containing 1 kg of water at each

solute concentration. Plot V vs. m. Use program Mathcad, QQLSQ, or TableCurve
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(or all three, if available) to obtain a quadratic expression V ¼ aþ bmþ cm2.

Obtain an expression for the slope dV/dm which is the same as qV=qn2ð Þn1 . This is
the partial molal volume of ZnCl2. It is a partial volume because V varies with both

nZnCl2 and the number of moles of water n1. What is the partial molal volume of

ZnCl2 in water at 1.00 molal concentration? What is the partial molar volume of

water at this concentration?

PROBLEMS

1. Select several values for m of the data set in Exercise 3-1 and calculate xi � mð Þ
for each of them. Plot the curve of

P
xi � mð Þ2 as a function of the selected

parameter m and locate the minimum visually. Compare with Solution 3-1.

2. Obtain Eq. (3-8) from Eq. (3-6) through Eq. (3-7).

3. An excess of porphobilinogen in the urine is associated with hepatic disorders

and lead poisoning. Porphobilinogen can be separated from other porphyrins

by ion exchange chromatography and treated with p-dimethylaminobenzalde-

hyde (PDMA) to produce a red compound that absorbs light strongly at 550 nm.

A set of standard solutions was made up with concentrations of 50.0, 75.0,

100.0, 125.0, 150.0, 175.0, 200.0, 225.0, and 250.0 mg/100 mL of porphobi-

linogen. Their absorbances A after treatment with PDMA were 0.039, 0.061,

0.087, 0.107, 0.119, 0.163, 0.179, 0.194, and 0.213. What is the spectro-

photometric calibration curve A ¼ f (concentration) for this method? What are

the units of slope? Three urine specimens treated by this method yielded

absorbances A of 0.180, 0.162, and 0.213. What were the porphobilinogen

concentrations of these three samples?

4. Expand the three determinants D, Db, and Dm for the least squares fit to a linear

function not passing through the origin so as to obtain explicit algebraic

expressions for b and m, the y-intercept and the slope of the best straight line

representing the experimental data.

5. Set up the determinants D, Da, Db, and Dc for the least squares fit to a parabolic

curve not passing through the origin.

6. Expand the four 3� 3 determinants obtained in Problem 5.

7. Using the expanded determinants from Problem 6, write explicit algebraic

expressions for the three minimization parameters a, b, and c for a parabolic

curve fit.

8. Compare the solution for Problems 6 and 7 with the BASIC statements in

Program QQLSQ.BAS or QLLSQ.tru. They should agree.

9. Emsley, in the same paper referred to in Computer Project 3-1, presents

viscosity measurements Z for solutions of KF in HOAc as a function of

molality m with the following results

m 0:135 0:398 1:028 1:466 1:903 2:567 3:052 3:428 3:770 4:206 4:307
Z 1:38 1:77 3:69 5:97 8:68 16:34 29:29 41:53 58:57 92:73 106:36
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Carry out a statistical analysis of this data set including a fitting equation and all

uncertainties.

10. Write the determinant for a sixth-degree curve fitting procedure.

11. The volume of ZnCl2 solutions containing 1000 g of water varies according to

the quadratic equation (Computer Project 3-4)

V ¼ 999:71þ 21:148mþ 4:471m2

Find the partial molal volume of ZnCl2 in these solutions at 0.5, 1.0, 1.5 and 2.0

molar concentrations.

Multivariate Least Squares Analysis

In multivariate least squares analysis, the dependent variable is a function of two or

more independent variables. Because matrices are so conveniently handled by

computer and because the mathematical formalism is simpler, multivariate analysis

will be developed as a topic in matrix algebra rather than conventional algebra.

We have already seen the normal equations in matrix form. In the multivariate

case, there are as many slope parameters as there are independent variables and

there is one intercept. The simplest multivariate problem is that in which there are

only two independent variables and the intercept is zero

y ¼ m1x1 þ m2x2 ð3-54Þ
To simplify the algebra, the error in the x variable will be considered negligible

relative to the error in the y variable, although this is not a necessary condition.

Equation (3-54) describes a plane passing through the origin. Let us restrict it to

positive values of x1, x2, and y.

One measurement of the dependent variable yields y1 for known values of the

independent variables x11; x12

y1 ¼ m1x11 þ m2x12 ð3-55aÞ
and a second yields

y2 ¼ m1x21 þ m2x22 ð3-55bÞ
for new values of the independent variables x21; x22.

The mathematical requirements for unique determination of the two slopes m1

and m2 are satisfied by these two measurements, provided that the second equation

is not a linear combination of the first. In practice, however, because of experi-

mental error, this is a minimum requirement and may be expected to yield the least

reliable solution set for the system, just as establishing the slope of a straight line

through the origin by one experimental point may be expected to yield the least

reliable slope, inferior in this respect to the slope obtained from 2, 3, or p

experimental points. In univariate problems, accepted practice dictates that we
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obtain many experimental points and determine the ‘‘best’’ slope representing them

by a suitable univariate regression procedure.

The analogous procedure for a multivariate problem is to obtain many experi-

mental equations like Eqs. (3-55) and to extract the best slopes from them by

regression. Optimal solution for n unknowns requires that the slope vector be

obtained from p equations, where p is larger than n, preferably much larger. When

there are more than the minimum number of equations from which the slope vector

is to be extracted, we say that the equation set is an overdetermined set. Clearly, n

equations can be selected from among the p available equations, but this is precisely

what we do not wish to do because we must subjectively discard some of the

experimental data that may have been gained at considerable expense in time and

money.

Equation set (3-55) can be written in matrix form

y ¼ Xm ð3-56Þ
where X is the matrix of (known) input variables

X ¼ x11 x12
x21 x22

� �
ð3-57Þ

y is the nonhomogeneous vector of dependent experimental measurements, and m

is the slope vector, that is, the solution vector of the regression problem.

The deviations or residuals of y1 and y2 from the regression plane passing

through the origin are

d1 ¼ m1x11 þ m2x12 � y1 ð3-58aÞ
d2 ¼ m1x21 þ m2x22 � y2 ð3-58bÞ

which are minimized by setting q
qm1

P
d2i and

q
qm2

P
d2i equal to zero as shown in the

section on linear functions not passing through the origin. These minimizations

yield

m1x
2
11 þ m2x11x12 þ m1x

2
21 þ m2x21x22 ¼ y1x11 þ y2x21 ð3-59aÞ

m1x11x12 þ m2x
2
12 þ m1x21x22 þ m2x

2
22 ¼ y1x12 þ y2x22 ð3-59bÞ

We are dealing with real numbers that commute; hence, it is evident that the right

side of Equation set (3-59) is

x11 x21
x12 x22

� �
y1
y2

� �
ð3-60Þ

or

XTy ð3-61Þ
where the matrix XT is the transpose of the input matrix X.
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The left side of the normal equations can be seen to be a product including X, its

transpose, and m. Matrix multiplication shows that

XTXm ð3-62Þ

is the matrix representation of the left side of the normal equations (see Problems).

Two important facts emerge here. First, the method is general and can be worked

out for the n� n case ðn > 2Þ as above but with added labor. Second, the input

matrix need not be square. By the geometric nature of a rectangular matrix, it is

always conformable for multiplication into its own inverse. The result is a square

product matrix of the smaller of the two dimensions of the rectangular input matrix.

Indeed, for the present treatment to be nontrivial, the input matrix must be

rectangular; a square input matrix with X�1 defined (X nonsingular) represents

the problem of n independent equations in n unknowns, which is the problem we

said we do not want to solve. From this point on, envision X as a p� n matrix with

p > n.

The normal equations are simultaneous equations

XTXm ¼ XTy ð3-63Þ

in which XTy yields a vector of the smaller dimension of XT, the same dimension

as the vector obtained as the product XTXm. The normal equations are often

written

XTX
� �

m ¼ q ð3-64Þ

where XTX
� �

emerges as the coefficient matrix of a simple set of simultaneous

equations, m is the solution vector, and q is the nonhomogeneous vector XTy.

Solution follows by the usual method of inverting the coefficient matrix and

premultiplying it into both sides

XTX
� ��1

XTX
� �

m ¼ XTX
� ��1

q

or

m ¼ XTX
� ��1

q ð3-65Þ

This equation permits us to generate an n-fold slope vector m from a rectangular

matrix X and a dependent variable vector y. The procedure is analogous to the

univariate case of generating the slope of a calibration curve passing through the

origin from p known values of xi and the corresponding measured values

y1; . . . ; yi; . . . ; yp, with the intention of using m to determine unknown values of

x (the concentration of an analyte perhaps) from future measurements of y.
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In the multivariate case, one slope vector is not enough; a square slope matrix

must be generated with dimensions equal to the number of independent unknowns

xi one wishes to determine. The slope matrix is

M ¼ m11 m12

m21 m22

� �
ð3-66Þ

for a problem in two unknowns and larger for n unknowns. This is done by

repeating the procedure just given for obtaining an m vector n times with different

vectors y1; y2; . . . ; yp to produce an n� n slope matrix M. Once having M, one

can determine unknown values of x

x ¼ M�1y ð3-67Þ

The n-fold procedure ðn > 2Þ produces an n-dimensional hyperplane in nþ 1

space. Lest this seem unnecessarily abstract, we may regard the n� n slope matrix

as the matrix establishing a calibration surface from which we may determine n

unknowns xi by making n independent measurements yi. As a final generalization, it

should be noted that the calibration surface need not be planar. It might, for

example, be a curved surface that can be represented by a family of quadratic

equations.

An illustrative example generates a 2� 2 calibration matrix from which we can

determine the concentrations x1 and x2 of dichromate and permanganate ions

simultaneously by making spectrophotometric measurements y1 and y2 at different

wavelengths on an aqueous mixture of the unknowns. The advantage of this simple

two-component analytical problem in 3-space is that one can envision the plane

representing absorbance A as a linear function of two concentration variables

A ¼ f ðx1; x2Þ.

Application: Simultaneous Analysis by Visual Spectrophotometry

Simultaneous Cr2O
2�
7 and MnO�

4 determination (Ewing, 1985) is a multivariate

spectrophotometric analysis that requires determination of a matrix of four

calibration constants, one for each unknown at each of two wavelengths,

a11x1 þ a12x2 ¼ A1

a21x1 þ a22x2 ¼ A2

ð3-68Þ

The elements aij are absorptivities (or are proportional to absorptivities, depending

on the concentration units and cell dimensions), x ¼ � x1
x2

�
is the unknown

concentration vector, and y ¼ � A1

A2

�
is the absorbance vector, observed at wave-

lengths l1 and l2.
The absorbance A is proportional to x through Beer’s law (see Computer

Project 2-1). The analytical problem is to solve the matrix equation

Ax ¼ y ð3-69Þ

CURVE FITTING 83



for x from measured values of y once we have determined the matrix A. Be careful

to distinguish between A and A. (For accepted nomenclature, see Ewing, 1985.)

The wavelengths li should be chosen so as to make the A matrix as ‘‘nonsingular as

possible,’’ that is, wavelengths should be selected so that, insofar as possible,

absorbance by one species dominates all the rest. The wavelengths selected for this

problem are 440 nm for Cr2O
2�
7 and 525 nm for MnO�

4 .

Dichromate-permanganate determination is an artificial problem because the

matrix of coefficients can be obtained as the slopes of A vs. x from four univariate

least squares regression treatments, one on solutions containing only Cr2O
2�
7 at

440 nm, one on the same solution at 525 nm, and one on solutions containing only

MnO�
4 at each of these two wavelengths. We did this for five concentrations of each

absorbing species and obtained the matrix

A ¼ 4:39� 10�3 2:98� 10�3

3:85� 10�4 4:24� 10�2

� �
ð3-70Þ

Elements in the slope matrix A are proportional to absorptivities and concentrations

are in parts per million. We shall take this as the ‘‘true’’ slope matrix.

Part 1. Generate the slope matrix from Eq. (3-65)

To obtain this matrix by the multivariate method, we first generate two absorptivity

vectors a1j and a2j from a known concentration matrix in parts per million

X ¼

53:0 8:65
27:0 13:0
80:0 4:33
0:0 17:3
106 0:0

0
BBBB@

1
CCCCA ð3-71Þ

and the measured absorbance vectors yj, one at the lower wavelength and one at the

higher wavelength. From the measured absorbance vector y ¼ f0:251; 0:149; 0:361;
0:049; 0:456g at 440 nm, we obtained the vector a1j ¼ f4:32� 10�3; 2:72� 10�3g
rounded to the appropriate number of significant figures. This is the top row of the

matrix A.

Mathcad

X :¼

53:0 8:65

27:0 13:0

80:0 4:33

0:0 17:3

106 0:0

0
BBBBBB@

1
CCCCCCA XT ¼ 53 27 80 0 106

8:65 13 4:33 17:3 0

� �
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XT � X ¼ 2:117� 104 1:156� 103

1:156� 103 561:861

� �

XT � X� ��1¼ 5:32� 10�5 �1:094� 10�4

�1:094� 10�4 2:005� 10�3

� �

y :¼

:251

:149

:361

:049

:456

0
BBBBBB@

1
CCCCCCA y1 :¼

:401

:568

:209

:740

:042

0
BBBBBB@

1
CCCCCCA ðXT � XÞ�1 � XTy ¼ 4:316� 10�3

2:723� 10�3

� �

Repeating the process with a new measured absorbance vector {0.401, 0.568,

0.209, 0.740, 0.042} at 525 nm leads to the a2j vector y2 ¼ f3:85� 10�4;
4:29� 10�2g, the bottom row of the slope matrix. Together, they yield A

A ¼ 4:32� 10�3 2:72� 10�3

3:85� 10�4 4:29� 10�2

� �
ð3-72Þ

Matrix (3-72) is essentially the same as matrix (3-70), but it is not exactly the same

because it was obtained by the multivariate method from a different data set.

Part 2. Analyze unknown mixtures using the A matrix and two

measurements of the absorbance, one at 440 nm and the other at

525 nm, as the y vector.

Having combined the two absorbance vectors into the absorbance matrix A, we are in a

position to use A to solve for unknown concentration vectors x. Because y ¼ Ax, it

follows that

x ¼ A�1y

Suppose that we have measured absorbance vectors y for three different solutions each

containing both Cr2O
2�
7 and MnO�

4 . Let us call them ya, yb, and yc,

ya :¼ :331
:401

� �
yb :¼ :156

:354

� �
yc :¼ :177

:723

� �

where the measurement at 440 nm is the y1 (top) element in each y vector and the 525

measurement is the y2 (bottom) element in y. The solution concentrations in parts per

million follow easily.

Mathcad

A :¼ :004316 :002723

:000385 :0429

� �
ya :¼ :331

:401

� �
yb :¼ :156

:354

� �
yc :¼ :177

:723

� �
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A�1 � ya ¼ 71:2

8:71

� �
A�1 � yb ¼ 31:11

7:97

� �
A�1 � yc ¼ 30:55

16:58

� �

The fourth significant figures in the vectors xb and xc are artifacts of the

calculation. The concentration vectors should be reported as xa ¼ f71:2;
8:71g; xb ¼ f31:1; 7:97g, and xc ¼ f30:5; 16:6g ppm.

Error Analysis

Subtracting the slope matrix obtained by the multivariate least squares treatment

from that obtained by univariate least squares slope matrix yields the error matrix

0:07� 10�3 0:26� 10�3

0:0 �0:50� 10�3

� �
ð3-73Þ

where the univariate results are taken as ‘‘true’’ values.

Normally, one does not have ‘‘true’’ values of the elements of the slope matrixM

for comparison. It is always possible, however, to obtain ŷy, the vector of predicted y

values at each of the known xi from any of the slope vectors m obtained by the

multivariate procedure

ŷy ¼ Xm ð3-74Þ

This permits error analysis of that vector. (Note that the order Xm is necessary for

the matrix and vector to be conformable for multiplication.) Repeating the

procedure for all m vectors leads to error analysis of the entire matrix M.

We wish to carry out a procedure that is the multivariate analog to the analysis in

the section on reliability of fitted parameters. A vector multiplied into its transpose

gives a scalar that is the sum of squares of the elements in that vector. The ŷy vector

leads to a vector of residuals

e ¼ ŷy� y ¼ Xm� y ð3-75Þ

The product eTe is the sum of squares of residuals from the vector of residuals. The

variance is

s2 ¼ eTe

p� n� 1
ð3-76Þ

where p is the number of measurements made to establish n components of the

slope vector. Under the assumption that the residuals are normally distributed, the

best estimator of the variance of the ith element in m is s2dii, where dii is the ith

diagonal element of D ¼ XTX
� ��1

. These variances are analogous to those

obtained by Eqs. (3-34).
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For our sample data set of Cr2O
2�
7 and MnO�

4 absorbances, we seek the first of

the two ŷy vectors of residuals at 440 nm.

X :¼

53:0 8:65

27:0 13:0

80:0 4:33

0:0 17:3

106 0:0

0
BBBBBB@

1
CCCCCCA m1 :¼ :00432

:00272

� �

X �m1 ¼

0:252

0:152

0:357

0:047

0:458

0
BBBBBB@

1
CCCCCCA

This gives an error (residual) vector of

y :¼

:251
:149
:361
:049
:456

0
BBBB@

1
CCCCA y� X �m1 ¼

�1:488� 10�3

�3� 10�3

3:622� 10�3

1:944� 10�3

�1:92� 10�3

0
BBBB@

1
CCCCA

which leads to

SSE :¼ ðy� X �m1ÞT � ðy� X �m1Þ SSE ¼ ð3:18� 10�5Þ

and an s2 value of

s2 ¼ eTe

p� n� 1
¼ SSE

5� 2� 1
¼ 3:18� 10�5

2
¼ 1:6� 10�5

The required inverse matrix D ¼ XTX
� ��1

is

D ¼ 5:32� 10�5 �1:09� 10�4

�1:09� 10�4 2:01� 10�3

� �
ð3-77Þ

which gives the uncertainties in row 1 of the slope matrix as

A ¼ ð4:32� 0:03Þ � 10�3 ð2:72� 0:18Þ � 10�3

3:85� 10�4 4:29� 10�2

� �
ð3-78Þ

The reader is asked to find the standard deviations of the slopes of row 2 of the A

matrix in Problem 9 below.
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Student’s t statistics (Rogers, 1983) follow in the usual way as do the 95%

confidence limits on the computed slopes, fð4:32� 0:12Þ � 10�3; ð2:72� 0:77Þ�
10�3g at 440 nm and fð3:85� 2:7Þ � 10�4; ð4:29� 0:17Þ � 10�2g at 525 nm.

These are not the same as the standard deviations due to the t statistic. The relative

uncertainty on element a21 is large because the parameter is an order of magnitude

smaller than the other elements in the slope matrix.

COMPUTER PROJECT 3-5 j Calibration Surfaces Not Passing

Through the Origin

Let the generalization of Eq. set (3-55)

yi ¼
X

mjxij ð3-79Þ
each contain a term, call it m0, with the stipulation that xi0 is some constant value,

take it to be 1.0 for simplicity. The normal equations and the solution for the m

vectors follow just as they did in the previous section except that each equation in

set (3-58) contains an additive constant m0. The constant m0, a minimization

parameter along with the rest of the mj, is the best estimator of the y intercept for a

function not passing through the origin; it is the unique point at which the

calibration surface cuts the y-axis.

To set up the problem for a microcomputer or Mathcad, one need only enter

the input matrix with a 1.0 as each element of the 0th or leftmost column. Suitable

modifications must be made in matrix and vector dimensions to accommodate

matrices larger in one dimension than the X matrix of input data (3-56), and output

vectors must be modified to contain one more minimization parameter than before,

the intercept m0.

Procedure. The method can be tested using the matrix of concentrations, in

micromoles per liter (mmol L�1), of tryptophan and tyrosine at 280 nm suitably

modified to take into account constant absorption at 280 nm of some absorber that

is neither tryptophan nor tyrosine

X ¼

1:0 47:6 116

1:0 125 147

1:0 23:7 109

1:0 156 48:3
1:0 272 15:1

0
BBBB@

1
CCCCA ð3-80Þ

Columns 2 and 3 of matrix (3-80) are analogous to the concentration matrix (3-71).

Using the absorbance vector {0.846, 1.121, 0.776, 0.599, 0.559}, compute the

solution vector, m280. The first element of the solution vector is the intercept due to

background absorption, and the second two elements are the absorbancies. What

are the absorbancies of tyrosine and tryptophan at 280 nm by this method?

Compare your results with the accepted values a280ðtyrÞ ¼ 1:28� 103 and

a280ðtryÞ ¼ 5:69� 103 L mol�1 cm�1 (Eisenberg and Crothers, 1979). What are

the units of your results for tyrosine and tryptophan? What is the intercept of

absorbance at 280 nm due to compounds that are neither tyrosine nor tryptophan?
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COMPUTER PROJECT 3-6 j Bond Energies of Hydrocarbons

Determination of bond energies in hydrocarbons is a nontrivial example of multi-

variate analysis because lone C��C and C��H bonds cannot be observed in stable

hydrocarbons; they always appear in groups. One could take the C��H bond energy

to be one-fourth of the energy of atomization of methane, subtract six times that

value from the energy of atomization of ethane to get the C��C single bond energy,

and proceed in a like way, using the atomization energies of an alkene and an

alkyne to generate the carbon-carbon double and triple bonds. This strategy would

be risky at best because the C��H bonds in a single molecule, methane, would be

taken to represent all C��H bonds, ethane would be taken to represent all C��C
bonds, and so on. It would be better to draw bond energies from a basis set of data

for several, preferably many, molecules on the reasonable assumption that the mean

result is more reliable than any single result from the set. Because the bonds cannot

be observed singly, the problem is multivariate, and because we wish to generate a

few bond energies from many experimental results, the input matrix will be

overdetermined.

We will generate the energies for the carbon-hydrogen bond BCH and the carbon-

carbon single bond BCC using the five linear alkanes from ethane through hexane as

the five-member data base. The equation to be used is

hBCH þ sBCC ¼ Ha ð3-81Þ
where h is the number of C��H bonds in each hydrocarbon, s is the corresponding

number of C��C single bonds, and Ha is the enthalpy of atomization. Enthalpies of

atomization of carbon and hydrogen were taken as 716.7 and 218.0 kJ per mole of

atoms produced (Lewis et al., 1961) and were combined with the appropriate

enthalpy of formation (Cox and Pilcher, 1970; Pedley et al., 1986; www.webbook.

nist.gov) to obtain the enthalpy of atomization of each hydrocarbon by the method

shown in Fig. 3-3 (see also Computer Project 2-1). The enthalpy of formation of

methane, �f H
298ðmethaneÞ ¼ �74:5 kJ mol�1, is the enthalpy necessary to go

from the elements in the standard state (0 by definition) to the molecule in the

C atoms, H atoms

C atoms 1663
kJ/mol

4(218.0) =
872.0 kJ/mol

716.7 kJ/mol

–74.3 kJ/mol

methane0

Figure 3-3 Enthalpy Diagram for the Atomization of Methane.
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standard state at 298 K. In this illustration and in the computer project calculations

that follow, discrepancies of �2 kJ mol�1 are not uncommon because of experi-

mental uncertainty and differences among the various sources. We shall go into the

difference between energy and enthalpy in this context in a later chapter.

Computation. Decide on an appropriate input matrix of bond numbers

h1 s1
h2 s2

..

. ..
.

hn sn

0
BBB@

1
CCCA

for ethane through hexane. The enthalpy of formation vector is {�20.24, �24.83,

�30.36, �35.10, �39.92} in the same order, where the units are kilocalories per

mole. To convert from kilocalories per mole to kilojoules per mole, multiply by

4.184. Calculate the 5-fold enthalpy of atomization vector and the 2-fold vector of

bond enthalpies. Obtain an error vector by comparing your result with the accepted

values (Atkins, 1994) of 412 and 348 for the C��H and C��C bonds. respectively.

More than a reasonable number of significant figures is carried through the

calculation to be rounded off at the end. When properly rounded, the uncertainty of

the computed result should be reflected in the significant figures such that the

rightmost digit is uncertain but no more than one uncertain digit is included in the

final result. This is, of course, an approximate indicator of uncertainty; if a rigorous

indicator is desired, the standard deviation, variance, or confidence level should be

reported with the computed result.

COMPUTER PROJECT 3-7 j Expanding the Basis Set

Add ethylene, 1-propene, 1-butene, acetylene, and 1-propyne to the basis set. To do

this, you must calculate five new atomization enthalpies from cycles similar to the

one in Fig. 3-3. Also extend the input matrix to a 4� 10 matrix. Generate the C�H,

C��C, C����C, and C������C bond energies. Comment on the magnitude of the bond

enthalpies, particularly the enthalpies of the C��C single, double, and triple bonds.

Is there any relationship between bond strength and bond energy for the three

carbon-carbon bonds? Look up a set of accepted values for these bond energies and

calculate a 4-fold error vector. Does the error for C��H and C��C get larger or

smaller for the extended basis set as compared with the smaller basis set used in the

first part of this experiment? Discuss this result.

PROBLEMS

1. Obtain the normal equations [Eq. set (3-63)] from the minimization conditions

q
P

d2i
qm1

¼ q
P

d2i
qm2

¼ 0

90 COMPUTATIONAL CHEMISTRY USING THE PC



2. Multiply XTy from Eq. set (3-61) to show that it is equal to the right side of

Eq. set (3-63).

3. Multiply XTXm from Eq. set (3-61) to show that it is equal to the left side of

Eq. set (3-63).

4. Can a rectangular matrix be both premultiplied and postmultiplied into its own

transpose, or must multiplication be either pre- or post- for conformability? If

multiplication must be either one or the other, which is it?

5. Show that eTe is the sum of squares of elements in the vector e ¼ f1; 2; 3g.
6. Does eTe commute with eeT ?

7. What is the average enthalpy of atomization of the four C��H bonds in

methane? Compare this value with the accepted value of the C��H bond

enthalpy.

8. Calculate the bond enthalpy of the C��C bond in ethane using only the

enthalpies of atomization of methane and ethane. Compare this result with

the accepted result.

9. Find the standard deviations of the slopes in matrix (3-78) for row 2, which

refers to absorbances measured at 525 nm.

10. When 6 moles of the substrate analog PALA combine with the enzyme

ACTase, two things happen at the same time. The enzyme T unfolds to a

more active form R

T ! R

and 6 moles of PALA bind to the enzyme. The measured enthalpy of both

reactions together is

�H ¼ 6�PALH þ�T!RH ¼ �209:2 kJ mol�1

(Klotz and Rosenberg, 2000).

We would like to know the binding energy per mole of PALA and the

enthalpy of the transformation T ! R, but we do not have enough information.

Independent studies show that partial unfolding of ACTase occurs on binding

of less PALA, in particular, 1.8 mol of PALA cause 43% unfolding and 4.8 mol

cause 86%. The enthalpy changes are �63.2 and �184.5 kJ mol�1 respec-

tively, leading to

�H ¼ 1:8�PALH þ 0:43�T!RH ¼ �63:2 kJ mol�1

and

�H ¼ 4:8�PALH þ 0:86�T!RH ¼ �184:5 kJ mol�1

Use all three equations to find the enthalpies of binding and of unfolding for

this enzyme.
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C H A P T E R

4
Molecular Mechanics:

Basic Theory

The first molecular modeling technique we shall look at is molecular mechanics

(MM). MM is a very fast method of determining the geometry, molecular energies,

vibrational spectra, and enthalpies of formation of stable ground-state molecules.

Because of its speed, it is widely used on large molecules such as those of

biological or pharmaceutical importance that are currently beyond the reach of

more computer-intensive molecular orbital methods. MM is an empirical method,

relying on a large number of parameters, drawn from experimental data, called,

collectively, the force field parameters. The major drawback of MM is encountered

when one or more of the parameters necessary to solve a problem is not known.

Because they are parameterized using data from molecules in the ground state,

neither MM nor semiempirical methods are not as useful for modeling transition-

state chemistry as ab initio methods.

The Harmonic Oscillator

The harmonic oscillator (Fig. 4-1) is an idealized model of the simple mechanical

system of a moving mass connected to a wall by a spring. Our interest is in very

small masses (atoms). The harmonic oscillator might be used to model a hydrogen

atom connected to a large molecule by a single bond. The large molecule is so
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heavy that it can be considered a ‘‘wall’’ that is stationary relative to the quick

motions of the hydrogen atom.

If the spring follows Hooke’s law, the force it exerts on the mass is directly

proportional and opposite to the excursion of the particle away from its equilibrium

point xe. The particle of mass m is accelerated by the force F ¼ �kx of the spring.

By Newton’s second law, F ¼ ma, where a is the acceleration of the mass

F ¼ ma ¼ m
d2x

dt2
¼ �kx ð4-1Þ

where k is the force constant of the spring.

This is a differential equation that we shall see often. It has as one of its solutions

xðtÞ ¼ A coso t ð4-2Þ
where o is the angular frequency of oscillation expressed in radians

o ¼
ffiffiffiffi
k

m

r
ð4-3Þ

The cycle of oscillation is 0 to 2p, precisely the circumference of a circle. After one

cycle of 2p radians is complete, another cycle begins, identical to the one before it.

The angular frequency in radians o is related to the frequency expressed in units of

complete cycles per second n as o ¼ 2pn, whence

n ¼ 1

2p

ffiffiffiffi
k

m

r
ð4-4Þ

The modern unit, expressing frequency in cycles per second, is the hertz (Hz).

Note that we have taken a cosine rather than a sine function for our solution.

Substitution of either Eq. (4-2) or the equivalent sine function into Eq. (4-1) gives a

true statement (with certain restrictions on o); therefore, both are solutions.

Moreover, the sum or difference

coso t � sino t ð4-5Þ

is a solution, as is

e�io t ð4-6Þ

xe

x

Figure 4-1 A Harmonic Oscillator in One

Dimension.
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It is a property of this family of differential equations that the sum or difference of

two solutions is a solution and that a constant (including the constant i ¼ ffiffiffiffiffiffiffi�1
p

)

times a solution is also a solution. This accounts for the acceptability of forms like

xðtÞ ¼ A coso t, where the constant A is an amplitude factor governing the

maximum excursion of the mass away from its equilibrium position. The expo-

nential form comes from Euler’s equation

e�io t ¼ coso t � i sino t ð4-7Þ

a form that will be useful later.

The potential energy for a conservative system (system without frictional loss) is

the negative integral of a displacement times the force overcome. In this case, the

potential energy for a displacement x away from xe, is

V ¼ �
ðx
0

�kx dx ¼ kx2

2
ð4-8Þ

where we have taken V ¼ 0 at xe.

The Two-Mass Problem

If we think about two masses connected by a spring, each vibrating with respect to a

stationary center of mass xc of the system, we should expect the situation to be very

similar in form to one mass oscillating from a fixed point. Indeed it is, with only

the substitution of the reduced mass m for the mass m

n ¼ 1

2p

ffiffiffi
k

m

s
ð4-9Þ

where

m ¼ m1m2

m1 þ m2

ð4-10Þ

for the two masses m1 and m2 as in Fig. 4-2.

xc

m1 m2
Figure 4-2 Two Masses Vibrating Harmonically

with Respect to their Center of Mass. The center of

mass may be stationary or moving with respect to an

external coordinate system.
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To an observer at the center of mass, the overall motion of the system

(translation) is irrelevant. The only important motions are those motions relative

to the center of mass. Distances from the center of mass to each particle are internal

coordinates of the system, usually denoted r1 and r2 to emphasize that they are

internal coordinates of a molecular system.

The harmonic oscillator of two masses is a model of a vibrating diatomic

molecule. We ask the question, ‘‘What would the vibrational frequency be for

H2 if it were a harmonic oscillator?’’ The reduced mass of the hydrogen molecule

is

m ¼ m1m2

m1 þ m2

¼ 1

2
¼ 0:5000 atomic mass units

The atomic mass unit is 1:661� 10�27 kg, so m ¼ 0:500 atomic mass units ¼
8:303� 10�28 kg.

The atomic harmonic oscillator follows the same frequency equation that the

classical harmonic oscillator does. The difference is that the classical harmonic

oscillator can have any amplitude of oscillation leading to a continuum of energy

whereas the quantum harmonic oscillator can have only certain specific amplitudes

of oscillation leading to a discrete set of allowed energy levels.

Let us ‘‘guess’’ that the force constant is about 500 Nm�1. The vibrational

frequency is

n ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
500

8:303� 10�28

r
¼ 1:24� 1014 Hz ð4-11Þ

To get the frequency �nn in centimeters�1, the nonstandard notation favored by

spectroscopists, one divides the frequency in hertz by the speed of light in a

vacuum, c ¼ 2:998� 1010 cm s�1, to obtain a reciprocal wavelength, in this case,

4120 cm�1. This relationship arises because the speed of any running wave is its

frequency times its wavelength, c ¼ nl in the case of electromagnetic radiation.

The Raman spectral line for the fundamental vibration of H2 is 4162 cm
�1 . . ., not a

bad comparison for a simple model.

We are tempted to make some generalizations, for example, the guess 500 Nm�1

was pretty good for the H��H single bond. We might guess 500, 1000, and

1500 Nm�1 for the force constants of the C��C. C����C, and C������C bonds on the

grounds that double and triple bonds ought to be twice and three times as strong,

respectively, as single bonds (see Computer Project 3-5). These guesses won’t be

bad either. We are led to the conclusion that the harmonic oscillator is a reasonably

good approximation for the vibrational motion of at least some chemical bonds.

Of course, the ‘‘guesses’’ above aren’t really guesses. They are predicated on

many years of Raman and other spectroscopic experience and calculations that are

the reverse of the calculation we described. In spectroscopic studies, one normally

calculates the force constants from the stretching frequencies; in modeling, one
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seeks to find the stretching frequencies predicted by certain models. Moreover, the

atomic weights themselves, and hence the reduced mass, are the results of over

200 years of chemical and physical determinations relative to the defined atomic

weight of the 12 isotope of carbon as exactly 12.000. . . units.
These are all empirical measurements, so the model of the harmonic oscillator,

which is purely theoretical, becomes semiempirical when experimental information

is put into it to see how it compares with molecular vibration as determined

spectroscopically. In what follows, we shall refer to empirical molecular models

such as MM, which draw heavily on empirical information, ab initio molecular

models such as advanced MO calculations, which one strives to derive purely from

theory without any infusion of empirical data, and semiempirical models such as

PM3, which are in between (see later chapters).

Polyatomic Molecules

Most of the molecules we shall be interested in are polyatomic. In polyatomic

molecules, each atom is held in place by one or more chemical bonds. Each

chemical bond may be modeled as a harmonic oscillator in a space defined by its

potential energy as a function of the degree of stretching or compression of the bond

along its axis (Fig. 4-3). The potential energy function V ¼ kx2=2 from Eq. (4-8), or

V ¼ ðki=2Þðri � ri0Þ2 in terms of internal coordinates, is a parabola open upward in

the V vs. r plane, where ri replaces x as the extension of the ith chemical bond. The

force constant ki and the equilibrium bond distance ri0, unique to each chemical

bond, are typical force field parameters. Because there are many bonds, the

potential energy-bond axis space is a many-dimensional space.

There are forces other than bond stretching forces acting within a typical

polyatomic molecule. They include bending forces and interatomic repulsions.

Each force adds a dimension to the space. Although the concept of a surface in a

many-dimensional space is rather abstract, its application is simple. Each dimen-

sion has a potential energy equation that can be solved easily and rapidly by

computer. The sum of potential energies from all sources within the molecule is the

potential energy of the molecule relative to some arbitrary reference point. A

V

ri

Figure 4-3 Potential Energy as a

Function of Compression or Stretching

of a One-Dimensional Harmonic Oscil-

lator.
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convenient potential energy reference point is the hypothetical molecule as it would

be if no bond were either extended or compressed relative to its equilibrium bond

distance and no other nonequilibrium energy interactions existed within the

molecule.

We envision a potential energy surface with minima near the equilibrium

positions of the atoms comprising the molecule. The MM model is intended to

mimic the many-dimensional potential energy surface of real polyatomic mole-

cules. (MM is little used for very small molecules like diatomics.) Once the

potential energy surface has been established for an MM model by specifying the

force constants for all forces operative within the molecule, the calculation can

proceed.

The reason the equilibrium positions of the atoms are near but not at the minima

in potential energy for each bond considered individually is that, in a polyatomic

molecule, atomic positions are determined by a compromise among numerous

forces. In general, atoms reside at positions leading to a minimum potential energy

or equilibrium structure for the molecule as a whole. For example, the triatomic

molecule A��B��C has a ‘‘natural’’ length for the bonds A��B and B��C and a

‘‘natural’’ angle for the angle ABC. If there is also an A��C bond, that bond will

in general not be just the right length to fit into the space between A and C. It will

be compressed or extended according to the forces tending to maintain the ABC

bond angle. The ABC bond angle will also be distorted by the presence of the A��C
bond.

B

CA CA

B

The triangular molecule ABC will not display any of the ‘‘natural’’ bond lengths or

angles; rather, it will have equilibrium bond lengths and angles that are fairly close

to the natural lengths and angles. Each atom will be displaced some small distance

away from its energy minimum, contributing a potential energy to the equilibrium

structure. The sum of the potential energies brought about by displacements of

all atoms from their natural bond lengths, angles, etc. is the steric energy of the

molecule.

Molecular Mechanics

The problem of molecular mechanics is to find an unknown molecular geometry by

minimizing all contributions to the steric energy. The strategy used to optimize a

molecular geometry is to start with an approximate geometry and improve it

incrementally by an iterative procedure. The input geometry of the molecule, which

constitutes the major part of an MM input file, is specified by each of the three

coordinates of each atom in Cartesian space. In the course of the program run, each

atom is moved slightly.
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How does one ‘‘move’’ an atom? The atomic coordinates are changed slightly

from their initial values. One of two things can happen. Either the calculated total

potential energy of the molecule goes up or it goes down. If it goes up, the move

was in the wrong direction. The move was uphill on the potential energy surface,

away from the equilibrium structure, and it is discarded. If the energy goes down,

the move was in the right direction on the potential energy surface and the move is

retained. This process is iterated many times. Once the equilibrium geometry of the

molecule has been reached, the system must exit from the iterative loop.

Yes

Move and
Recalculate

Geometry
Optimized?

No

Concentrating on only one atom for the moment, there comes a time when the

energy change is small because the atom is near the bottom of its parabolic

potential energy function or well. When the atom is sufficiently near the bottom of

the potential energy well that the change in molecular energy for a small change in

position is within a predetermined limit, the potential energy is minimized and its

position is said to be optimized.

One cannot simply optimize the position of each atom in sequence and say the

job is done. Any change in an atomic position brings about a small change in the

forces on all the other atoms. Optimization has to be repeated until the lowest

molecular potential energy is found that satisfies all the forces on all the atoms. The

final location of an atom will, in general, be at a position that is some small distance

from the position it would have if it were not influenced by the other atoms in

the molecule.

The equilibrium structure of a molecule can also be found by geometry

minimization. To attain an efficient search of the potential energy surface, MM

programs are written with a gradient calculation as part of the minimization routine.

The gradient on a potential energy surface is essentially the slope. By selecting the

direction of maximum steepness for the next change in x-, y-, and z-coordinates, the

geometry is changed in the direction of maximum slope or ‘‘steepest descent.’’

Iterations continue by a route of steepest descent, thus approaching the equilibrium

geometry in the smallest number of iterations. An arbitrarily specified small

gradient can be used as an exit criterion from the optimization loop. Other

mathematical methods of finding the most advantageous path down a potential
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energy surface are also used in consideration of maximum speed and most effective

use of computer resources (Grant and Richards, 1995).

Away of making the program efficient is to program the computer to make large

changes in atomic coordinates when the gradient is large and small changes when

the gradient is small. In this way, large ‘‘steps’’ are taken in the direction of the

potential energy minimum when the atom is far from its equilibrium position but

the steps become smaller as the atom approaches its equilibrium location. Large

steps cover a lot of ground, to cut down on the number of steps, and small steps

fine-tune the equilibrium structure. Dependence of step size on gradient also

provides an exit from the iteration loop. When the average move of atoms has

been brought to within an arbitrary limit on step size, the optimization satisfies a

geometric criterion of equilibrium. The program exits the loop and prints out the

results of the calculation.

If a molecule is strained, atoms may not be very close to the minimum of their

individual potential energy wells when the best compromise geometry is reached.

In such a case, the geometric criterion does not provide an exit from the loop.

Programs are usually written so that they can automatically switch from a

geometric minimization criterion to an energy minimization procedure.

Rather than continuing to deal with abstractions, let us plunge right in by

carrying out a ‘‘bare bones’’ MM calculation. After the reader has a practical sense

of how MM calculations work, we shall return to some of the topics referred to

above in more detail and we shall introduce some others.

Ethylene: A Trial Run

A first illustration of an MM calculation is given by running the input

file ‘‘minimal’’ to find the equilibrium geometry of ethylene, C2H4, using the

program MM3. This input file has been stripped down so far that some chemists

might not even recognize it as an MM input file, but the computer does. Using a

graphical interface, it is common practice to carry out MM calculations without

ever seeing an input file, but it is important to know that it is there. Computers do

not process diagrams, they process numbers, strictly speaking, binary numbers.

The structure of input files is an important and recurring theme throughout this

book.

The first line contains the information that the number of atoms is (integer) 6 and

that the output will be minimal, designated by the integer 4. The second line

contains the information (also in integer format) that there will be 1 connected atom

list and that there will be 4 attached atoms. Connected atoms can be thought of as

making up the skeleton of the molecule, C����C in this case. Attached atoms are the

four hydrogens attached to the C����C skeleton by C��H bonds. The third line is

the actual connected atom list; atom 1 is connected to atom 2. The fourth line is the

attached atom list; atom 1 is attached to atom 3, atom 1 to 4, 2 to 5, and 2 to 6. The

block of information below line 4 is the geometry in the form of Cartesian

coordinates in order of the atoms, for example, atom 1 is at x ¼ 2., y ¼ 3., and
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z ¼ 0.. Distance units are in angstroms. The periods are necessary because the

computer system distinguishes between floating point numbers, which have a

decimal point, and integers, which do not. The rightmost column of integers in

the geometry block consists of atom identifiers, 2 for sp2 carbon and 5 for

hydrogen.

6 4

1 4

1 2

1 3 1 4 2 5 2 6

2. 3. 0. 2

3. 3. 0. 2

1. 4. 0. 5

1. 2. 0. 5

4. 4. 0. 5

4. 2. 0. 5

File 4-1a. A Minimal Input File for Ethylene. The format is for an MM3

calculation.

A very important aspect of File 4-1 is its strict format. If we look at the file once

again with spaces indicated by a line over the file (not a part of a working file), we

get File 4-1b.

5 10 15 20 25 30 35 40 45 50 55 60 65

6 4

1 4

1 2

1 3 1 4 2 5 2 6

2. 3. 0. 2

3. 3. 0. 2

1. 4. 0. 5

1. 2. 0. 5

4. 4. 0. 5

4. 2. 0. 5

File 4-1b. A Minimal File for Ethylene with Format Indicators. The italicized

line of format indicators at the top shows intervals of five spaces each. It is

illustrative only and is not part of the input file.

The format markers in File 4-1b are at intervals of five spaces each. Thus the

entire file might be thought of as a 10� 67 matrix with row 1 containing the

integers 6 and 4 in columns 65 and 67 and zeros elsewhere. (In FORTRAN, a blank

is read as a zero.) Row 5 has the floating point number 2. in columns 4 and 5. Both

the 2 and the . (decimal point) occupy a column. Row 5 column 35 contains the

integer 2 and so on.
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The input geometry is shown in the x, y plane by Fig. 4-4 (all z-coordinates are

zero) with the carbon atoms assigned arbitrary y-coordinates 3 angstroms above the

x-axis and the hydrogens at approximate positions 2 and 4 angstroms above the x-

axis. The hydrogens are paired, 2 hydrogen atoms 1 angstrom to the left of one

carbon atom and 2 hydrogen atoms 1 angstrom to the right of the other.

When we graph the positions of all six atoms in the x, y plane, the approximate

nature of the input file is evident. Anyone who has used simple ‘‘ball and stick’’

molecular models will see that the carbon atoms in Fig. 4-4 are too close together

and the entire molecule is compressed in the x-direction.

The Geo File

When the MM program is run, in this case MM3 from N. L. Allinger’s group at the

University of Georgia, the final position of each atom is printed in two output files.

One output file is the geo file.

File 4-2 The Geo File for Ethylene. For exact formats, please see program

documentation (e.g., Tripos, 1992).

X, Angstroms

0 1 2 3 4 5
Y

, A
ng

st
ro

m
s

1

2

3

4

5

Figure 4-4 The Input Geo-

metry for Ethylene.
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At first glance, the geo file looks different from the input file in many respects,

but, remembering that FORTRAN is a strictly formatted language and that a blank

is equal to zero in FORTRAN, we soon see that it is essentially the same except for

some of the values in the geometry specification. The geo file is actually a

legitimate input for a repeat calculation, although without some alteration of the

first two control lines the output obtained from a second MM run using the geo file

as input would merely be redundant with the first.

There are really only two elements in the geo file that we haven’t seen already in

the input file, the 10.0 in row 1 and a 1 in row 2. Neither is essential; the file will run

without them. The first addition is a maximum time for the run, which is set at 10.0

minutes. Exceeding a time maximum usually indicates a fault in the input file that

has sent the computer into an infinite loop. In practice, this safety check on the

calculation should never be encountered. The 1 in row 2 is a ‘‘switch.’’ A switch is a

number that either turns a calculation on or turns it off. In this case, the original

input file had a blank in row 2, column 75, indicating that a precise van der Waals

energy need not be calculated until near the end of the computer run when the

geometry is nearly at its final accuracy. Because the geo file is output with the

correct geometry (within the accuracy of the model) the van der Waals calculation

switch is on (integer 1 in position 2, 75). Although we haven’t discussed van der

Waals forces yet, the point here is that there are many features of an MM program

that can be switched on or off by a properly formatted 0 or 1.

Format is the key to the remaining apparent discrepancies between the geo file

and the minimal input file. The letters C or H identifying the six atoms in the

molecule and the parenthesized 1 through 6, numbering them for convenience of

the human reader, are not read by the computer because they are out of format. The

computer can be programmed to read or to ignore any position in the input matrix.

In this case, the alphabetic identifiers and sequential numbers are in positions that

are ignored.

The only real difference between the input file and the geo file is that the x- and

y-coordinates have changed. (The z-coordinates remain zero throughout the

calculation.) Closer inspection shows that the changes in the y-coordinates are all

very small. The only substantial changes during the MM program run came in the x-

coordinates, as we might have anticipated by looking at Fig. 4-4. The distance

between the carbon atoms has increased from 1.0 Å in the input file to about 1.34 Å

in the geo file. The latter value is about what we would expect for a C����C bond. The

x-distance between the H atoms has contracted from 3 Å to about 2.47 Å . This is a

nonbonded interatomic distance (Fig. 4-5).

The Output File

The output file contains more information than the geo file and is documented to be

easily understood by the human reader. The first block of information (PART 1) is

an echo of the input file with some explanatory notation. The dielectric constant is

arbitrarily set at the default value of 1.5. Default values are automatically used in
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the program run when the operator declines or fails to specify a value in the input

file. The second block of information in PART 1 is the INITIAL STERIC ENERGY.

which we expect to be high because the molecule is not very close to its equilibrium

geometry. The principal contribution to the initial steric energy is compression

energy in the x-dimension brought about by the abnormally short C����C bond in the

input. There is a significant contribution from the H��C��H bond angle, which is

abnormally small in the input structure. The dipole moment of this symmetrical

structure is zero.

PART 1

CHEMICAL FORMULA : C( 2) H( 4)

FORMULA WEIGHT : 28.032

DATE : 09/14/2001

TIME : 11:53:17

THE COORDINATES OF 6 ATOMS ARE READ IN.

CONFORMATIONAL ENERGY, PART 1: GEOMETRY AND STERIC ENERGY OF INITIAL

CONFORMATION.

CONNECTED ATOMS

1- 2-

ATTACHED ATOMS

1- 3, 1- 4, 2- 5, 2- 6,

INITIAL ATOMIC COORDINATES

ATOM X Y Z TYPE

C( 1) 2.00000 3.00000 0.00000 ( 2)

C( 2) 3.00000 3.00000 0.00000 ( 2)

H( 3) 1.00000 4.00000 0.00000 ( 5)

H( 4) 1.00000 2.00000 0.00000 ( 5)

H( 5) 4.00000 4.00000 0.00000 ( 5)

H( 6) 4.00000 2.00000 0.00000 ( 5)

X, Angstroms

1 2 3 4

Y
, A

ng
st

ro
m

s

1

2

3

4

5

Figure 4-5 The Geometry of Ethylene with all Atoms at their Equilibrium Positions in the

MM3 Force Field.
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DIELECTRIC CONSTANT¼ 1.500

INITIAL STERIC ENERGY IS 251.2407 KCAL.

COMPRESSION 218.0511

BENDING 31.9368

BEND-BEND �0.8293

STRETCH-BEND �0.2189

VANDERWAALS

1,4 ENERGY �0.0439

OTHER 0.0000

TORSIONAL 0.0000

TORSION-STRETCH 0.0000

DIPOLE-DIPOLE 2.3450

CHARGE-DIPOLE 0.0000

CHARGE-CHARGE 0.0000

DIPOLE MOMENT¼ 0.000 D

CPU time for initial calculation is 3.13 seconds.

PART 2 tracks the progress of iterative geometry minimization until the average

change in atomic position is less than the default limit of 1� 10�5 Å. In this case,

the geometry is optimized by the end of the second cycle. Note that both the

average and maximum atomic movements diminish as the iterations proceed. The

root mean square (RMS) gradient is given in units of energy per unit distance.

CONFORMATIONAL ENERGY, PART 2: GEOMETRY MINIMIZATION

GEOMETRY OPTIMIZATION IS CONTINUED UNTIL ATOM

MOVEMENT CONVERGES WITHIN FOLLOWING VALUES:

AVERAGE MOVEMENT 0.00007 A

MAXIMUM MOVEMENT 0.00073 A

<<<<<<<<<<<<<<<<<C Y C L E 1>>>>>>>>>>>>>>>>>>

(CH)-MOVEMENT¼ 1

ITER 1 AVG. MOVE¼ 0.07057 A (MAX MOVE : ATOM 3 0.40396 A)

ITER 2 AVG. MOVE¼ 0.05886 A (MAX MOVE : ATOM 3 0.43342 A)

ITER 3 AVG. MOVE¼ 0.01364 A (MAX MOVE : ATOM 3 0.06326 A)

ITER 4 AVG. MOVE¼ 0.00272 A (MAX MOVE : ATOM 3 0.01899 A)

ITER 5 AVG. MOVE¼ 0.00031 A (MAX MOVE : ATOM 5 0.00196 A)

ITER 6 AVG. MOVE¼ 0.00004 A (MAX MOVE : ATOM 3 0.00025 A)

<<<<<<<<<<<<<<<<<C Y C L E 2>>>>>>>>>>>>>>>>>

(CH)-MOVEMENT¼ 0

ITER 7 AVG. MOVE¼ 0.00001 A (MAX MOVE : ATOM 5 0.00003 A)

* * * * * * * * * GEOMETRY IS OPTIMIZED * * * * * * * * *
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WITHIN : AVERAGE MOVEMENT 0.00001 A (LIMIT 0.00007 A)

MAXIMUM MOVEMENT 0.00003 A (LIMIT 0.00073 A)

GRADIENT

RMS GRADIENT 0.000940 KCAL/MOL/A

MAX GRADIENT

X-DIRECTION : ATOM # 1 0.002595 KCAL/MOL/A

Y-DIRECTION : ATOM # 2 0.001302 KCAL/MOL/A

Z-DIRECTION : ATOM #*** 0.000000 KCAL/MOL/A

DELTA TIME ¼ 0.00 SEC. TOTAL CPU TIME ¼ 3.18 SEC.

PART 3 is a repetition of PART 1 but with the final geometry (identical to the geo

file). Both compression and bending contributions to the final energy of the

ethylene molecule are small. Very small negative energies are sometimes encoun-

tered (e.g., the BEND-BEND energy) because steric energy is calculated relative to

an arbitrary zero point. Dipole-dipole interactions are major contributors to the final

steric energy. van der Waals repulsion and dipole-dipole interactions are discussed

below. Although in this case relaxation of compression energy of the C����C bond

and relaxation of the bending energy of the H��C��H group are the major

contributors to the decrease in initial steric energy from 251.2 kcal mol�1 to the

final steric energy of 2.6 kcal mol�1, one should beware of making fine geometric

distinctions drawn from steric energies ascribed to different modes of motion. Force

field parameters are to some degree composite, and a single steric energy may

represent more than one mode of motion.

Once we have the atomic coordinates relative to any origin, they can be

translated so that the origin is at the center of mass, permitting calculation of the

moments of inertia about the x-, y-, and z-axes. A single mass rotating in a plane at a

fixed distance r from a center of rotation has a moment of inertia I ¼ mr2. For

a collection of masses mi, each rotating at fixed ri, the moments of inertia are

additive

Isystem ¼
X

mir
2
i ð4-12Þ

In the case of a polyatomic molecule, rotation can occur in three dimensions about

the molecular center of mass. Any possible mode of rotation can be expressed as

projections on the three mutually perpendicular axes, x, y, and z; hence, three

moments of inertia are necessary to give the resistance to angular acceleration by

any torque (twisting force) in x, y, and z space. In the MM3 output file, they are

denoted IX, IY, and IZ and are given in the nonstandard units of grams square

centimeters.

CHEMICAL FORMULA : C( 2) H( 4)

FORMULA WEIGHT : 28.032

DATE : 09/14/2001

TIME : 11:53:18
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* M M 3 * * * * * * * * * * * 1 9 9 2 *

* * PARAMETER RELIABILITY

* *

* * BLANK¼GOOD

* * B¼ FAIR

* * C¼ TRIAL

* * R¼READ IN

* * S¼ SUBSTITUTED

* * U¼ PARAMETER NOT EXIST

* *

* * THIS IS SHOWN AT THE END

* * OF THE LINE.

* * * * * * * * * * * * * * * * * * * * * *

CONFORMATIONAL ENERGY, PART 3: GEOMETRY AND STERIC

ENERGY OF FINAL CONFORMATION.

CONNECTED ATOMS

1- 2-

ATTACHED ATOMS

1- 3, 1- 4, 2- 5, 2- 6,

FINAL ATOMIC COORDINATE

ATOM X Y Z TYPE

C( 1) 1.77425 3.00009 0.00000 ( 2)

C( 2) 3.11180 3.00003 0.00000 ( 2)

H( 3) 1.20884 3.94637 0.00000 ( 5)

H( 4) 1.20876 2.05386 0.00000 ( 5)

H( 5) 3.67729 3.94627 0.00000 ( 5)

H( 6) 3.67722 2.05375 0.00000 ( 5)

DIELECTRIC CONSTANT¼ 1.500

FINAL STERIC ENERGY IS 2.6017 KCAL.

COMPRESSION 0.0190

BENDING 0.0160

BEND-BEND �0.0005

STRETCH-BEND 0.0020

VANDERWAALS

1,4 ENERGY 0.4905

OTHER 0.0000

TORSIONAL 0.0000

TORSION-STRETCH 0.0000

DIPOLE-DIPOLE 2.0748

CHARGE-DIPOLE 0.0000

CHARGE-CHARGE 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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COORDINATES TRANSLATED TO NEW ORIGIN WHICH IS

CENTER OF MASS

C( 1) �0.66877 0.00003 0.00000 ( 2)

C( 2) 0.66877 �0.00003 0.00000 ( 2)

H( 3) �1.23419 0.94631 0.00000 ( 5)

H( 4) �1.23427 �0.94620 0.00000 ( 5)

H( 5) 1.23426 0.94620 0.00000 ( 5)

H( 6) 1.23419 �0.94631 0.00000 ( 5)

MOMENT OF INERTIA WITH THE PRINCIPAL AXES

(1) UNIT ���� 10**(–39) GM*CM**2

IX¼ 0.5994 IY¼ 2.8021 IZ¼ 3.4015

(2) UNIT¼AU A**2

IX¼ 3.6103 IY¼ 16.8762 IZ¼ 20.4865

DIPOLE MOMENT¼ 0.000 D

COMPONENTS WITH PRINCIPAL AXES

X¼ 0.0000 Y¼ 0.0000 Z¼ 0.0000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

End of

Total cpu time is 3.18 seconds.

This job completed at 11:53:18 (09/14/2001)

File 4-3 Conclusion of the Output File for Minimal Ethylene.

TINKER

For many individuals and chemistry departments the financial demands of com-

mercial research level software packages are a burden. An extensive package of

powerful MM and related programs called TINKER is available and can be

downloaded from dasher.wustl.edu/tinker/ as freeware. These programs, from

J. W. Ponder’s group at Washington University School of Medicine, St. Louis are not

as easy to set up and operate as commercial programs, which are written to appeal

to a wide audience of specialists and nonspecialists, but with an occasional hint

from the local computer software guru, they can be up and running in a few hours.

As with most molecular modelers, you will probably pick a few programs that do

the job you want done and feel no guilt at all about ignoring the others. My favorite

MM program is MM3. It is well to have a general idea what is out there, however,

in case you run into a problem that your favorite program does not do or does

poorly. The input file for a TINKER geometry minimization of ethylene is quite

similar to minimal.mm3.

The name of the TINKER input file in File 4-4 is ethylene.xyz, where the .xyz

indicates that the geometry is given in Cartesian coordinates. (There are other
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coordinate systems for input files.) Comparison with the MM3 input file should

enable you to describe the function of every integer and floating-point number in

File 4-4.

6 Ethylene

1 C 2.000000 3.000000 0.000000 2 2 3 4

2 C 3.000000 3.000000 0.000000 2 1 5 6

3 H 1.000000 4.000000 0.000000 5 1

4 H 1.000000 2.000000 0.000000 5 1

5 H 4.000000 4.000000 0.000000 5 2

6 H 4.000000 2.090000 0.000000 5 2

6 Ethylene

1 C 1.831255 3.008674 0.000000 2 2 3 4

2 C 3.168740 3.021325 0.000000 2 1 5 6

3 H 1.256891 3.949547 0.000000 5 1

4 H 1.274778 2.057116 0.000000 5 1

5 H 3.725220 3.972888 0.000000 5 2

6 H 3.743115 2.080450 0.000000 5 2

Files 4-4a and b. The Initial (top) and Final (bottom) Geometries of Ethylene

Calculated by TINKER Using the MM3 Force Field.

Version 3.9 of TINKER offers no fewer than 18 different force fields, some still

under construction or in testing, and many oriented toward biochemical and

medicinal applications, as appropriate for a system developed at a medical school.

In running the programs, both MM3 and TINKER prompt the operator to provide

information, including the force field desired, before the program run. Comparing

the geometric output for MM3 and TINKER using the MM3 force field, we see that

the specific values of the coordinates differ slightly (the entire molecule has moved

during minimization) but the molecular geometry itself is the same for the two

output files. The distance between carbon atoms is 1:338� 0:001 Å by both

calculations.

Note the distinction between programs and force fields. It is possible to carry out

a calculation using the MM3 force field and the MM3 program, or one can run the

TINKER program with any one of its 18 resident force fields. It is also possible to

modify a force field or to create one’s own force field. This is a difficult advanced

task and is not recommended. Good force fields are the result of decades of testing

by competent scientific teams. Addition of a bad force field to the literature is a

disservice to the science.

Within reasonable limits, different starting coordinates can be given for the

initial geometry; optimization leads to the same final geometry. Changing the input

bond distance of the C����C bond to 1.5 Å and the y-coordinates of two of the

hydrogen atoms by 0.2 Å gives a final C����C bond length of 1.337 Å, in agreement
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with 1.338 Å obtained from the previous starting geometry. The slight difference of

0.001 Å ���� 1 mÅ is found because the geometry criterion for exit from the loop can

never be zero but must be some small finite value. Thus two different calculations

may arrive at slightly different locations very near the bottom of a potential

energy well, both of which satisfy the geometric criterion for exit from the iterative

loop.

COMPUTER PROJECT 4-1
�� The Geometry of Small Molecules

We have just seen how to construct a TINKER input file for ethylene. We shall now

construct several new models and study their geometries.

Procedure. a) Using the procedure shown in constructing the ethylene input file,

construct an approximate input file for H2O. The atom type for oxygen is 6. The

approximate input geometry can be taken as in File 4-5, where all of the z-

coordinates are set at 0. Go to the tinker directory in the MS-DOS operating system

and create an input file for your H2O calculation. Be sure the extension of the input

file is .xyz. Rename or edit the file as necessary.

x

y

O (0,1)

(1,0) HH (–1,0)

3 Water

1 H �1. 0. 0. 21 2

2 O 0. 1. 0. 6 1 3

3 H 1. 0. 0. 21 2

File 4-5. An Approximate Input File for the Water Molecule. A hydrogen

attached to an oxygen has the special atom designator 21 as distinct from the

designator 5 in hydrocarbons.

Run the file using program TINKER and force field MM3 to determine the H��O
bond lengths and the H��O��H bond angle. The program runs on the command

minimize. In responding to the prompt requesting the name of the input file,

include the .xyz extension. Respond to the parameter request with mm3. Take the

default gradient (hit Enter). The output file is stored under the name of your input

file with a tilde 1, that is, the input file h2o.xyz produces the output file h2o� 1.xyz.
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Search the literature for the experimental results for the H��O bond lengths and the

H��O��H bond angle, and include a discussion of the comparison in your report.

Unlike program MM3, input format is not strict. The output file is formatted by

TINKER, but the input file does not have to resemble it. After a successful run on

H2O, try cutting down on the number of spaces between elements in the input file

until you have arrived at File 4-4. Do the more compact files run? Does File 4-4

run?

3 Water

1 H �1. 0. 0. 21 2

2 O 0. 1. 0. 6 1 3

3 H 1. 0. 0. 21 2

File 4-6. TINKER Input File for the Water Molecule in Free Format

b) Construct a TINKER input file for ethane and determine its geometry. The

numerical designator for an sp3 carbon atom is 1, and the designator for hydro-

carbon H is 5. You will have some nonzero z-coordinates.

c) Using a piece of graph paper, plot the approximate coordinates of ethylene

from File 4-4b, the minimized or ‘‘optimized’’ structure of the model for ethylene

in the MM3 force field. Replace one of the hydrogens in File 4-4b with a methyl

group. Change the coordinates of File 4-4b by replacing atom 4 (hydrogen) with the

four atoms of a methyl group at the approximate geometry that you have found

from your graph paper sketch. Renumber the atoms 1 to 9 as necessary (File 4-7).

You now have an approximate input geometry for propene. Rename your file

propene.xyz and minimize to obtain the final geometry for the propene model.

Many variations are possible but the following file runs.

9 Propene

1 C 1.831225 3.000000 0.000000 2 2 3 6

2 C 3.168775 3.000000 0.000000 2 1 4 5

3 H 1.265783 3.946259 0.000000 5 1

4 H 3.734217 3.946259 0.000000 5 2

5 H 3.734217 2.053741 0.000000 5 2

6 C 1.3 2.0 0.000000 1 1 7 8 9

7 H 0.2 2.0 0.0 5 6

8 H 0.5 1.5 1.0 5 6

9 H 1.2 1.2 0.0 5 6

File 4-7. TINKER Input File for Propene in Mixed Format. Mixed format can be

used when one is modifying or editing an output file from a previous

calculation.

Note that the strict format of the ethylene output file was not followed in adding

new atoms. Be careful of your connected atom list to the right of the input file; it is

a rich source of potential errors. Use your graph to keep the numbering straight.
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d) Write out a table of bond lengths for the three bonds, C��C, C����C, and C��H
that you have studied using the MM3 force field (Table 4-1).

The GUI Interface

Up to this point, we have used a numerical input file to stress the fact that

computers work on numbers, not diagrams. MM3 and TINKER work from

numerical input files that are similar but not identical. Both can be adapted to

work under the command of a graphical user interface, GUI (pronounced ‘‘gooey’’).

Before going into more detail concerning MM, we shall solve a geometry

optimization using the GUI of PCMODEL (Serena Software). The input is

constructed by using a mouse to point and click on each atom of the connected

atom list or skeleton of the molecule. This yields Fig. 4-6 (top).

After a rough estimate of the connected atom geometry has been entered, the

hydrogen atoms can be added by exercising the H/AD option and the branch atom,

by default a carbon atom at the top of Fig. 4-6, can be changed into an oxygen atom

with the periodic table (PT) option. In this way, the skeleton at the top of Fig. 4-6 is

converted to an approximate input structure at the bottom of the figure. The GUI

translates the relative positions in the diagram into atomic coordinates to be input to

the computer. The GUI also places the hydrogen atoms at default positions that, by

the nature of the methyl group, for example, have nonzero z-coordinates (Fig. 4-7).

As pictorial as all of this is, don’t forget that the computer processes only numbers,

and binary numbers at that.

The parameter sets for PCMODEL V 8.0 are MMX, a derivative of the MM2

parameter set of Allinger’s group, MM3, MMFF94, AMBER, and Oplsaa. We shall

continue using MM3. After minimization, the model, in this case that of propan-

2-ol, has bond distances and angles at the equilibrium values as determined by the

force field. Once one knows the Cartesian coordinates of all the atoms in the model,

one knows everything that can possibly be known about its geometry including all

Table 4-1 Bond Lengths for Carbon-Carbon Bonds in Alkanes and Alkenes

Bond C��C C����C C��H
Bond length — — —

O

Figure 4-6 Connected Atom Skeleton for Propan-2-ol (Top).

Input Diagram with Hydrogen Atoms Added and the Oxygen Atom

Indicated (Bottom).
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bond lengths, simple angles, dihedral angles, and nonbonded interatomic distances.

Each of these features is automatically calculated by PCMODEL using its QUERY

option. During minimization, the image of the molecule on the CRT screen may

change a lot or a little depending on how much the input geometry is changed to

obtain the final geometry. After minimization, two energies (enthalpies) are

displayed prominently at the right of the screen, the enthalpy of formation and

the strain energy. They are related to the steric energy and are discussed below.

Parameterization

There is at present no methodical way of obtaining precise values of parameters

necessary to construct a useful MM force field. Bond lengths and bond angles can

be determined from rotational spectroscopy, X-ray diffraction, neutron diffraction,

or electron diffraction experiments, but, unfortunately, experimental values from

these sources are not strictly comparable (Burkert and Allinger, 1982). This is not

because of any fundamental flaw in either the methods or the experiments but

because the methods measure slightly different things. For example, X rays are

diffracted by the electrons surrounding a nucleus and electrons are diffracted by

the nucleus itself. If the electron probability density is centered at the nucleus these

results are essentially the same, but if the electron probability density is distorted

away from the nucleus toward the bond the results will be different. An example of

distortion away from a nucleus toward a bond is the distortion of electrons away

from the proton in a C��H bond.

In general, we know bond lengths to within an uncertainty of 0.005 Å ���� 0.5 pm.

Bond angles are reliably known only to one or two degrees, and there are many

instances of more serious angle errors. In addition to experimental uncertainties and

inaccuracies due to the model (lack of coincidence between model and molecule),

some models present special problems unique to their geometry. For example, some

force fields calculate the ammonia molecule, NH3, to be planar when there is

abundant experimental evidence that NH3 is a trigonal pyramid.

N

H
H H

Figure 4-7 Output of the Optimized

Geometry of Propan-2-ol Depicted as a

Pluto Model. Pluto is one of several

pictorial options provided in PCMODEL.
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Force constants can be calculated if a spectral line can be associated with a

specific mode of motion. For example, if we take the C��H stretching frequency to be

at 2900 cm�1 in the infra red spectrum of hydrocarbons, we have k ���� 457 N m�1 for

the force constant of the C��H bond. The actual value of k taken from the MM3

force field differs somewhat from this value, being 4.74 mdyn/Å ���� 474 N m�1. The

frequency enters into this calculation as the square, making k very sensitive to n.
Infrared C��H stretching frequencies are not identical from one molecule to the

next, giving a range of values of n from which to calculate k. A choice of 2960

cm�1 (Barrow, 1999) leads to k ���� 480 N m�1. General-purpose force fields like

MM3 are parameterized to reproduce not only spectral vibrational frequencies but

molecular geometry and energy as well. Selection of the stretching parameters is

guided by peaks in the vibrational spectrum, but the final choice is intended to give

the best results for all calculated values. In the absence of a methodically precise

method of parameter generation, some degree of trial and error enters into

the process.

Parameterization of organometallics and metal-ligand compounds is much more

difficult than parameterization of organic compounds for several reasons (Jensen,

1999). Principal among these reasons are those related to the weakness of the

coordinate covalent bonds relative to the covalent bond. Metal-ligand bonds are less

rigid and the energy barriers between different structures are lower than those in

organic compounds. Thus a metal might form a tetrahedral complex with one

ligand and a square planar complex with another similar ligand. Relativistic

effects are also more prominent in metal bonding than in the bonding of first-row

elements.

The Energy Equation

The MM energy equation is a sum of sums that began in a simple form, for

example,

V ¼
X

Vstretch þ
X

Vbend þ
X

Vtorsion þ
X

VVDW ð4-13Þ

for stretching, bending, torsional and van der Waals energies, respectively (Allinger,

1982), and has been made more elaborate as new terms were added for greater

generality and accuracy. In writing an energy equation there are two ways to go.

One can include only a few potential energy sums, for computational speed, or one

can include many sums, for accuracy. The first option is taken when one seeks a

force field that is applicable to large molecules as in enzyme and protein studies,

and the second option is taken when one seeks accurate information on relatively

small organic or inorganic molecules. Force fields applicable to polypeptides and

proteins include AMBER of Kollman’s group (Kollman, 1995) and CHARMM

(Karplus, 1986). Both AMBER-95 and CHARMM22 are available in the TINKER

force field collection. The most widely used of the force fields parameterized for

accuracy on relatively small molecules is MM3.
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It may seem strange that the number of sums in the energy equation is, within

limits, arbitrary. If a mode of motion or intramolecular interaction exists in a given

molecule, doesn’t that demand a term in the energy equation? Not necessarily. Each

energy equation has its own force-field parameter set. Obviously, increasing the

number of sums in the energy equation by one requires a whole new set of

parameters for that sum, but it also changes all the other parameters as well.

Conversely, when we go from a more detailed parameter set like Allinger’s MM3 or

MM4 to a simpler set, we are ‘‘lumping together’’ two or more modes of motion or

intramolecular interactions as one. Molecular mechanics being a purely empirical

method, one can treat two modes of motion as one, hoping that the simpler

parameter set will generate a potential energy close to what would be found by

using a more complete energy equation with both modes included. Generally, this

hope is not completely fulfilled and some accuracy is sacrificed in schemes that use

simplified energy equations.

Another indication of the arbitrary nature of the MM force field is the united

atom approach taken in parameterizing a number of force fields intended for large

molecules, especially proteins. In this approximation, groups of atoms, say the

��CH3 group, are treated as single atom types and given parameters for the group.

Speed is gained, but some accuracy is lost.

Sums in the Energy Equation: Modes of Motion

The four steric energy sums in Eq. (4-13) corresponding to stretching, bending, and

torsional modes of motion and van der Waals intramolecular interaction appear to be

about the smallest number one can use in an accurate MM geometry minimization.

The Stretching Mode

Taylor’s expansion of a function at x ¼ a is usually written

f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ f 00ðaÞ
2

ðx� aÞ2 þ � � � þ f nðaÞ
n!

ðx� aÞn þ � � �
ð4-14Þ

If we carry out a Taylor’s expansion of the potential energy about the equilibrium

length of an isolated chemical bond, we get

VðrÞ ¼ V0 þ dV

dr

� �
r0

ðr � r0Þ þ 1
2

d2V

dr2

� �
r0

ðr � r0Þ2 þ 1
6

d3V

dr3

� �
r0

ðr � r0Þ3

þ 1
24

d4V

dr4

� �
r0

ðr � r0Þ4 þ � � � ð4-15Þ

The potential energy is never known in an absolute sense but is always measured

relative to some arbitrary benchmark. Let us set the potential energy to zero at the

equilibrium bond length, V0 ¼ 0, which is the bottom of the potential energy well.
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Also, the first derivative at the minimum (or other extremum) of a function is zero,

ðdV=drÞr0 ¼ 0. The first nonzero term in Eq. (4-15) contains 1
2
ðd2V=dr2Þr0 which is

precisely the force constant that multiplies ðr � r0Þ2 to give what we called the

harmonic oscillator equation

VstretchðrÞ ¼ kstretch

2
ðr � r0Þ2 ð4-16Þ

in the section on the two-mass problem. The harmonic oscillator term is often

called the quadratic term. It leads to the parabola in Fig. 4-3. The remaining terms

in Eq. (4-15) involving the third and fourth derivatives are called the cubic and

quartic terms.

Both the cubic and quartic terms widen the parabola of Fig. 4-3 at large values of

r (to the right of the figure), giving a potential energy curve that is closer to what we

suppose the real potential energy curve to be for extended bonds. Both of these

terms have disadvantages aside from making the calculations longer and making

the parameter set larger. The cubic term goes to �1 as the bond length becomes

very large, and the quartic term goes to 1. We know that the energy necessary to

separate two bound atoms

A� B ! Aþ B

to a very large distance is neither �1 nor 1. Rather, it is a finite value called

the dissociation energy; therefore, neither the cubic nor the quartic term predicts the

correct physical behavior at limiting values of r. Other methods are used to improve

the curve fit at large values of r, but each carries with it some disadvantage (Jensen,

1999).

Fortunately for most ground-state calculations, and especially for equilibrium

geometry calculations, the harmonic oscillator approximation holds and anharmo-

nic extensions of Eq. (4-16) are not needed for bond stretching. The reason is that,

under normal circumstances, the cost in energy of bond stretching is high and bonds

stay within about �0.1 Å of their equilibrium values. Exceptions are highly strained

molecules, excited-state calculations (for which MM may not be the method of

choice anyway), and simulations.

The Bending Mode

Bond angle bending

A

CB

is handled in much the same way as stretching. The potential energy of bending for

an isolated bond angle can be expanded as a Taylor series about its equilibrium
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value, which is taken as zero, Vbendð0Þ ¼ 0. Dropping the second term and terms

higher than the third term leaves only the quadratic term expressing the excess

potential energy over Vbendð0Þ

VbendðyÞ ¼ kbend

2
ðy� y0Þ2 ð4-17Þ

which is analogous to the harmonic oscillator expression for the stretching and

compression energy, Eq. (4-16). The quadratic approximation for bending is, if

anything, a better approximation to the actual energy curve than it is for stretching

energy, and it is reliable for most angles within a range of about �30
 of the

equilibrium value.

When the three-atom bond angle is part of a molecular structure, its equilibrium

angle is usually not at the equilibrium angle for an isolated bond because of the

geometric compromise brought about by the rest of the molecule. This results in a

nonzero contribution VbendðyÞ 6¼ 0 to the steric energy for the equilibrium structure

of the molecule as a whole. Like bond stretching, bond bending is an energetically

costly deformation of the isolated bond angle; hence, at the equilibrium structure

for the molecule as a whole, the bond is usually not deformed by more than a few

degrees, well within the �30
 limits of the quadratic function (4-17).

In those instances in which the bond angle is very strongly deformed, the usual

expansion of the potential energy function to a cubic or quartic equation can

improve the fit to the actual bending energy, but, in MM3, it has been found

expedient to define entirely new atom types with entirely new parameter sets. For

example, the C��C��C angles in cyclopropane (60
) or cyclobutene (90
) are

distorted beyond the limit of the quadratic expressions for bending of sp3 carbon

atoms. Bending in cyclopropane is outside the range of even the cubic and quartic

equations. Carbon atoms in cyclopropane and cyclobutene are given special atom

type numbers (22 and 57, respectively, in the MM3 force field) and treated as

though they have no relation to the sp3 carbon atom, which, energetically, they do

not. For this reason, there are more than a dozen atom type numbers for the single

element carbon in MM3. Carbon is unique in having so many atom type numbers

because carbon is unique in the number of chemical combinations it enters into.

In general, force fields are constructed with an eye to achieving the greatest

simplicity consistent with chemical reality and new atom types are admitted only

grudgingly.

COMPUTER PROJECT 4-2
�� The MM3 Parameter Set

One can start building up a list of MM3 parameters by use of the TINKER analyze

command. Don’t expect to build up the entire set, which occupies about 100 pages

in the MM3 user’s manual, but do obtain a few representative examples to get an

idea of how a parameter set is constructed. From previous exercises and projects,

you should have input and output geometries for an alkene, an alkane, and water.

From these, the object is to determine the stretching and bending parameters for the

C��C, C����C, C��H, and O��H bonds. The C��H bond parameters are not the same
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for sp2 and sp3 carbon atoms. In MM3 the stretching parameter (Hooke’s law

constant k) is given the symbol KS and the bending constant is given the symbol

KB. Fill out parameter Table 4-2.

Procedure. One of the advantages of the TINKER system is that it is constructed

with the same kind of input format for different modules of the program. This

permits us to use either the input or the output file from one module, say the

minimize module, as input to another module, in this case the analyze module. Start

TINKER using the analyze command and respond to the prompt asking which

program you want to analyze with water.xyz or water ~ 1.xyz, or whatever you

have named your input or output file for determining the geometry of the H2O

molecule. Respond to the prompt for a parameter set with MM3. You will then be

given several choices for your next step. Experiment with them. Some will give you

information that you understand, and some will give you information that you may

not understand. Each time you select a new response to this prompt, you will have

to start the program again. Finally, settle on response P asking for the parameters.

Specify atom numbers 1 and 2. You should get an output enabling you to fill in

KS ���� 7.6300, KB ���� 0.6300 for the O��H bond stretch and bend constants with

0.9470; 105.0 for the equilibrium bond length (angstroms) and equilibrium angle

(degrees). Continue in this way to fill out the entire table. For the carbon atom

parameters, you may want to simplify your output by specifying only one atom, say

atom 1. You will get parameters for all motions involving that atom.

As given, the bond angle is ambiguous because you cannot have an angle

between only two atoms. Therefore, there must be a third atom involved in the last

entry. In the case of water, it can only be H��O��H. Make it clear in your report what

the third atom is, that is, give a bond angle for C��C��H and one for C����C��H,
which will not be the same.

Discuss the quantitative differences among entries in your table. Why are some

entries larger than other comparable entries? What are the torsional bending

constants for C����C and C��C? Why do they assume the values you find? What is

a ‘‘torsional angle,’’ anyway?

Torsion. Torsional deformation of an isolated equilibrium structure means twist-

ing it so as to change the dihedral angle connecting two atoms. The dihedral angle

Table 4-2 Some Stretching and Bending Parameters from the MM3 Parameter Set

KS KB Length Angle

C��C 4.4900 — 1.5247 —

C����C

C����C��H
C��C��H
O��H 7.6300 0.6300

Units are md/angstrom, angstrom/rad2, angstrom, and degrees respectively. One millidyne (md)¼
108 newtons (N).
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of the structural unit H��C����C��H in ethylene, for example, is the angle made by the

C��H bonds as seen looking down the C����C bond axis. In the equilibrium structure

of ethylene the H��C����C��H dihedral angle is zero, but by applying a torsional

force it can be changed to some angle o (Fig. 4-8).

Torsional deformation of dihedral angles in molecules is different from bond

stretching or bond bending in that it is periodic. After deformation through an angle

o of 2p, the original molecular structure is reproduced. For reasons of symmetry,

the structure may be reproduced by deformations of less than 2p. For example, the

structure of ethylene is reproduced at o ¼ p and that of ethane is reproduced at

o ¼ p and 5p=3: Ground-state ethane is in the staggered conformation, o ¼ p=3.
On rotation of one methyl group relative to the other, the molecule passes over three

potential energy maxima to arrive at, sequentially, a staggered minimum at p and a

staggered minimum at 5p=3 before returning to its original conformation at

o ¼ p=3.
VðoÞ is continuous and has continuous first derivatives over the interval [0; 2p],

which is the complete interval of o. It is convenient to rename the interval [�p; p]
(which is the same as [0; 2p]) for the following discussion. Any continuous function
can be represented over this interval by the Fourier series

f ðxÞ ¼ 1
2
a0 þ

X1
n¼1

ðan cos nxþ bn sin nxÞ ð4-18Þ

where

an ¼ 1
p

ðp
�p

f ðxÞ cos nx dx ð4-19aÞ

and

bn ¼ 1
p

ðp
�p

f ðxÞ sin nx dx ð4-19bÞ

VðoÞ is an even function of o over the interval [�p; p]. That is, if we calculate

VðoÞ at any o and calculate VðoÞ at �o, we get the same answer; the function is

symmetrical about the central axis of the interval. Conversely, if we get �VðoÞ, the
function is odd over the interval. The sine function is odd over the interval [�p; p];

C H

H

C

ω

Figure 4-8 The H��C����C��H Torsional Bond Angle in Deformed

Ethylene. The normal torsional angle is o ¼ 0
.
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hence, f(x) sin nx for even f(x) is the product of an even function times an odd

function, which is an odd function (Fig. 4-9).

The integral of an odd function over a symmetrical interval is zero because every

element on the left half of the interval is canceled by an equal and opposite element

on the right. From this we know that all the constants bn ¼ 0 in Eq. (4-19b) and the

half-Fourier series

f ðxÞ ¼ 1
2
a0 þ

X1
n¼1

an cos nx ð4-20Þ

expresses any symmetrical even function over the interval [�p; p].
The torsional potential energy functions are symmetrical and even over the

interval and can be written

VtorsðoÞ ¼
XVn

n
cos no ð4-21Þ

if we take a0 ¼ 0, which is equivalent to setting VtorsðoÞ ¼ 0 as the base line of

VtorsðoÞ. Within the series, one term dominates, for example, the n ¼ 2 term for

ethylene. Ethylene strongly resists torsional deformation to any angle other than 0

and p (180
) (Fig. 4-10).
The barriers in Fig. 4-10 are high because it is difficult to twist ethylene out of its

normal planar conformation. The energy is the same at the midpoint and the end

points in Fig. 4-10 because, on twisting an ethylene molecule 180
 out of its normal

conformation, one obtains a molecule that is indistinguishable from the original.

The molecule has 2-fold torsional symmetry.

f (x) f (x)

x x

Figure 4-9 A Simple Even Function, f ðxÞ ¼ const. and a Simple Odd Function, f ðxÞ ¼ x.

ω0

Figure 4-10 The Potential Energy Form for

Ethylene. The midpoint of the range of o is 0
 and
the end points �180
, that is, [�p; p]. The mid

point and end points are identical by molecular

symmetry.
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Ethane presents a different situation. It is easily twisted out of its low-energy

stable form and it has 3-fold torsional symmetry; that is, by twisting one methyl

group relative to the other by 120
 or 240
 (or �120
), one obtains conformers that

are indistinguishable from the original. The n ¼ 3 term of the Fourier series models

ethane well. It has three potential energy minima for the staggered conformers

separated by three potential energy barriers or maxima for the eclipsed conformers.

The difference in height of the potential energy barriers between ethylene and

ethane is modeled by selecting different values for the torsional constants with

V3 < V2 (Fig. 4-11).

In the case of ethylene, because of 2-fold symmetry, odd terms drop out of the

series, V3;V5; . . . ¼ 0. In the case of ethane, because of 3-fold symmetry, even

terms drop out, V2;V4; . . . ¼ 0. Terms higher than three, even though permitted by

symmetry, are usually quite small and force fields can often be limited to three

torsional terms. Like cubic and quartic terms modifying the basic quadratic

approximation for stretching and bending, terms in the Fourier expansion of

VtorsðoÞ beyond n ¼ 3 have limited use in special cases, for example, in problems

involving octahedrally bound complexes. In most cases we are left with the simple

expression

VtorsðoÞ ¼ V1

2
1þ coso½ � þ V2

2
1� cos 2o½ � þ V3

2
1þ cos 3o½ � ð4-22Þ

Although one of the three terms retained in the Fourier expansion is often

sufficient for the potential energy function of molecules with symmetrical rotations

about the central bond, systems of lower symmetry can be represented as well.

Addition of an n ¼ 1 term to the n ¼ 3 term for ethane permits description of

molecules that do not have 3-fold symmetry about the central bond. An example is

n-butane. n-Butane has a low energy anti form separated by rotational barriers from

two gauche forms that are somewhat higher in energy than the anti conformer but

not as high as the barriers. This energetic situation is usually represented by a

diagram similar to Fig. 4-12, where the gauche minima are at either side of the

central maximum and the most stable conformer, the anti form, is at the arbitrary

potential energy of zero, the end points [�p; p] measured from o ¼ 0 at the center

of the diagram.

0
ω

Figure 4-11 The Potential Energy Form for Ethane. The midpoint of the range of o is

o ¼ 0
 and the end points are �180
. The end points and the minima are identical by

molecular symmetry and correspond to the stable staggered form.
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Addition of a Vn¼1 term (Fig. 4-13) to the V1;V2, and V3 term (Fig. 4-11) has the

effect of raising the central maximum and the two symmetrical minima without

changing the energy of the stable anti form, so producing a potential energy

function that shows the qualitative form of Fig. 4-12. In this context, the Vn¼1 term

is called a low-order torsional term.

Experimental measurements have given the height of the energy minima of the

gauche forms as 0.9 kcal mol�1, the height of the central maximum as 4.5 kcal

mol�1 above an arbitrary zero point established by the anti form, and the height of

the two potential barriers separating the gauche from the anti form is 3.8 kcal mol�1

(Ege, 1998). By fitting these and other experimental results, empirical values of

V1;V2;V3, and the Vn¼1 term can be determined.

The van der Waals Energy. In the study of nonideal gases, we encounter

attractive and repulsive forces between uncharged atoms and molecules among

which no formal bonds exist. These forces were studied extensively by van der

Waals in the nineteenth century. Even in particles that possess neither an ionic

charge nor a permanent partial charge (permanent dipole), van der Waals forces

exist. Indeed, van der Waals attractive forces must exist even in inert gases like

helium, otherwise they could not be liquefied. Repulsive van der Waals energies are

much larger than attractive forces over short distances.

In molecular mechanics, van der Waals forces are thought to influence atoms

that are within the same molecule but are not connected by chemical bonds. They

are sometimes called 1-4 interactions, implying that a chemical bond does not exist

between atoms 1 and 4 but one does exist between atoms 2 and 3

1 4

32

Figure 4-13 The Potential Energy Form Given by the Vn¼1 Term in the Truncated Fourier

Series (Eq. 4-21).

0
ω

Figure 4-12 The Potential Energy Form for n-Butane. The energy is expressed relative to

the energy of the anti form which is at the end-points of the range of o.
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The origin of van der Waals repulsive forces is mutual interaction of electrons in

atom 1 and those in atom 4.

If the methyls in n-butane are eclipsed, the hydrogens are also eclipsed. If the

van der Waals repulsion energy in the n-butane conformation with methyl groups

eclipsed is of a higher energy than the conformation with a methyl group eclipsing a

hydrogen atom, we get a potential energy curve very like Fig. 4-13 by the

mechanism shown in Fig. 4-14. Addition of this potential energy to the potential

energy of the staggered and eclipsed forms of an ethane-like molecule as in Fig. 4-11

also gives the right qualitative form for the potential energy of n-butane shown in

Fig. 4-12. Empirical selection of the correct torsional parameters V1;V2;V3 and the

Vn¼1 term gives quantitative as well as qualitative agreement between the composite

potential energy curve for butane (Fig. 4-12) and the actual butane molecule.

There are several serious problems in modeling the correct van der Waals

potential function. First, it is by no means obvious that the methyl group exerts a

greater van der Waals repulsion on another methyl group than it does on hydrogen.

Neither methyl-methyl nor hydrogen-hydrogen repulsions can be studied in n-

butane in the absence of the other. Despite what one might suppose from the

relative sizes of methyl groups and hydrogen atoms, the van der Waals repulsion of

a hydrogen atom is not negligible. Precisely because of its small size and

consequent high charge density, hydrogen has a rather large effective atomic

radius. Furthermore, it is not obvious whether the potential energy increase of

the gauche forms of n-butane over the anti form is best modeled by inclusion of

lower-order Fourier series terms or by an entirely independent van der Waals energy

sum. Most recently, the latter solution has been preferred, but the form of the van

der Waals potential energy function is difficult to extract from the empirical data

available for the reasons just given.

Two potential energy expressions used for van der Waals interactions are the

Lennard–Jones 6/12 potential function or some modification thereof,

VvdW ¼ e
r0

r

	 
12
�2

r0

r

	 
6
 �
ð4-23Þ

where e is an adjustable parameter governing the depth of the slight minimum in the

potential energy curve and the Buckingham potential

VvdW ¼ Ae�Br � C

r6
ð4-24Þ

Figure 4-14 Excess Steric Energy of

the Methyl-Methyl Conformation Rela-

tive to the Methyl-Hydrogen Conforma-

tion. The Staggered Forms are Ignored

for Simplicity.
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where A, B, and C are adjustable parameters. These equations are often used in their

modified forms, for example by replacing r0 in Eq. (4-23) by fitting parameters, so

as to achieve more flexibility in fitting experimental data (Fig. 4-15).

Coulombic Terms. Coulombic energy of interaction arises from permanent

dipoles within the molecule to be modeled, for example, the partial þ and �
charges within a carbonyl group

dþ d�
C¼O

Coulombic potential energy is calculated by modification and fitting of some form

of Coulomb’s equation

V ¼ qiqj

4pe0 rij
ð4-25Þ

where 4pe0 is the vacuum permittivity (Atkins, 1994). In MM3, the energy of

Coulombic interaction of dipoles is calculated by

Vm ¼ mm0ðcos w� 3 cos a cos bÞ
Dr3

ð4-26Þ

where m and m0 are the dipole moments of interacting dipoles and D, the dipole

moment, is given a default value of 1.5 (seen in the output file) (Fig. 4-16).

r

E
ne

rg
y

Figure 4-15 A van der Waals Potential Energy Function. The Energy minimum is shallow

and the interatomic repulsion energy is steep near the van der Waals radius.

α β

χ

µ µ′

r

Figure 4-16 Orientation of Dipole Moment Vectors

to give Vm.
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The angles a, b, and w relate to the orientation of the dipole moment vectors.

The geometry of interaction between two bonds is given in Fig. 4-16, where r is the

distance between the centers of the bonds. It is noteworthy that only the bond

moments need be read in for the calculation because all geometric features (angles,

etc.) can be calculated from the atomic coordinates. A default value of 1.0 for

dielectric constant of the medium would normally be expected for calculating

structures of isolated molecules in a vacuum, but the actual default value has been

increased 1.5 to account for some intramolecular dipole moment interaction. A

dielectric constant other than the default value can be entered for calculations in

which the presence of solvent molecules is assumed, but it is not a simple matter to

know what the effective dipole moment of the solvent molecules actually is in the

immediate vicinity of the solute molecule. It is probably wrong to assume that the

effective dipole moment is the same as it is in the bulk pure solvent. The molecular

dipole moment (File 4-3) is the vector sum of the individual dipole moments within

the molecule.

The energy of intramolecular hydrogen bonding, if present, is calculated from a

modified Buckingham potential [Eq. (4-25)] multiplied by a factor cos y ðL=L0Þ to
take into account the angle y between the actual hydrogen bond in the molecule and

the ideal hydrogen bond angle (0
), along with the equilibrium length L of the

covalent bond of hydrogen as compared to its normal bond length L0 (Fig. 4-17).

In the case of ions, energies of charge-charge interaction are calculated directly

from the Coulomb equation and charge-dipole interaction energies are calculated

from a Coulomb equation with a geometric modification to account for the angle

between the dipole moment and the charge (Tripos, 1992).

COMPUTER PROJECT 4-3
�� The Butane Conformational Mix

We know from the discussion above that n-butane has an anti and two gauche forms

(mirror images). These are called stable conformers. Molecules having a dihedral

angle o (see Fig. 4-18) that is not at a minimum of energy are unstable

configurations. Although all three conformers, anti and two gauche forms, are

stable in the energetic sense that they are at the minima of potential energy wells,

there is enough thermal energy kBT that can be absorbed from the environment at

any normal temperature T 6¼ 0 to drive any conformer up over the potential maxi-

mum in Fig. 4-18 and change (twist) it into any other conformer. Interconversion is

H electronegative
atom

molecule

θ
.

hydrogen
bond

Figure 4-17 Hydrogen Bonding.
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very rapid, and no conformer can be obtained in the absence of the others. The

system exists as an equilibrium conformational mix.

We have it on good authority (Ege, 1998) that the gauche minimum on the

potential energy coordinate is about 0.9 kcal mol�1 higher in energy than the anti

conformation. This establishes a two-state energy system for the stable conformers,

gauche and anti (Fig. 4-19).

We know from the section on molecular speads in Chapter 1 and Computer

Project 3-2 that particles distribute themselves over an energy level spectrum in a

very definite way, governed by the Boltzmann equation, Eq. (3-39), N ¼ N0e
�ðmgh=kBTÞ

in the gravitational field. Equation (3-39) can be slightly modified by noting that

mgh is the potential energy of an object of mass m in the potential field. If we use V

to designate the potential energy not of gravity, but of twisting about the dihedral

angle in n-butane, and if we use N to denote the number of n-butane molecules in

the gauche condition relative to N0 molecules as the anti conformer,

N

N0

¼ 2e�ðV=kBTÞ ð4-27Þ

where we have arbitrarily set the potential energy of the anti conformer to 0 and we

have included the number 2 to account for the two-fold degeneracy of the upper

(gauche) energy level. (Each of the degenerate gauche levels can be considered to

accommodate its own population of molecules, independent of the other.) Strictly

speaking, the ratio N=N0 is a ratio of probabilities, but we shall take 1 mole as the

number of molecules so a calculated ratio of probabilities is a virtual certainty.

There is, of course, no restriction that the number of conformers must be two; the

method can be extended to many conformers as we would expect to do for more

complicated molecules. The object of this computer project is to find precise values

of V, the separation between or among conformers, and to use V to calculate the

relative populations of the conformers in the equilibrium conformational mix.

ω

VFigure 4-18 The Potential Energy for

Rotation of n-Butane About its Central

Bond Axis. The anti conformer in the

center is slightly lower in energy than

the two gauche conformers.

} ~ 0.9 kcal mol –1

Figure 4-19 Two-Level Energy Spectrum. The upper level is two-fold degenerate.
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Procedure. Use the PCMODEL GUI to draw the anti carbon skeleton

and left click H/AD to attach hydrogen atoms. The approximate input model

appears. Left click on force field, select MM3 and left click on compute !
minimize. The final (optimized) model appears with the MM3 energy (the steric

energy).

Do the same thing with the unstable configuration resulting from the carbon

skeleton

It will relax to one of the gauche conformers. Use the difference in steric energies to

calculate the equilibrium populations of the ground state and the two upper gauche

conformations at 298.15 K. Calculate and report the relative populations at 200 and

500 K. Repeat the entire project using the MMFF94 force field of Halgren and

Nachbar (Halgren and Nachbar, 1996) to be found using the force field option.

A Conformational Search-Global MM

Both PCMODEL (Serena Software) and MM3 (Tripos) have search routines that

permit the user to enter one conformer of a molecule and find all others. (Strictly, no

conformational search routine guarantees that all conformers have been found, but

in simple cases the chances are pretty good.) There are several strategies for

conformational searching, but a good one is to optimize the geometry for a

plausible input structure, randomly change the input geometry, optimize again,

and keep on doing this until one has reasonable assurance that all conformers have

been found. Random changes in the input geometry are often called ‘‘kicks.’’ This

simplistic strategy is what anyone might think of, except that the computer

implementation is a lot faster than you are. In taking many starting points, each

with a different geometry and potential energy, one is said to have searched the

potential surface for a specific mode of motion of the molecule. More than one

mode of motion can be searched at the same time.

To conclude this computer project, we shall first search the potential surface

for rotation of n-butane about its 2,3 C��C bond, for which we think we know

the answer, then search the potential surface for 1-butene, for which we do not. In

1-butene, the double bond establishes a rigid plane but the methyl group can take up

several different positions relative to it by rotation about the 2-3 single bond.

CH2CH3 CH2

CH3

etc.

Procedure. Open PCMODEL and work through this procedure step by step.

Otherwise, these instructions will be cryptic.
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n-Butane: Minimize anti n-butane as in the MM3 procedure above. Go to

Compute ! GMMX. Search on bonds. Setup bonds, select all and hit OK.

Enter Job Name 1-butene and Run Gmmx. You will see the model being ‘‘kicked’’

repeatedly. Left click outside of the GMMX Run box. You should see 3 #

minimized and 3 # found. We already know that there are only three conformers,

two of which are degenerate; hence, because Ecurrent 6¼ Eminimum we know all the

energies there are. Subtracting the lower from the higher energy permits calculation

of the population ratios of the conformational mix. If your energy difference is not

the same as the one you got in the first part of this project, check to see that you are

using the MM3 force field.

1-Butene: Now we shall look for the energies of the conformational mix of

1-butene. We know less about this molecule than we did about n-butane, so the

procedure will be a little more complicated.

Minimize the cis rotamer in the MM3 force field starting from the skeleton

using Add_B to make your double bond. Go to compute ! GMMX. Enter Job

Name 1-butene and setup bonds, select all (you are searching only rotations about

the 2,3 bond) and hit OK. Run Gmmx. Left click outside of the GMMX Run box.

You should see 3 # minimized and 3 # found, but this time we do not know how

many conformers there are. Stop Job and go to File ! open 1-butene. You should

see a structure list. Only three conformers are given, two of which are, again,

degenerate. In fact, there are four conformers, but two have energies so high that

they do not contribute significantly to the conformational mix. (Fig. 4-20).

Calculate the population ratios at 200, 298.15, and 500K in the MM3 and

MMFF94 force fields for 1-butene just as you did for n-butane.

Cross Terms

A simple example of a cross term is the stretch-bend interaction. If the angle ABC,

having elastic AB and BC bonds, is closed, the bonds stretch because of repulsion

between atoms A and C. The opposite is true if the angle is opened. Thus the stretch

and bend of the system ABC are not independent; rather, they are coupled. The

stretch-bend coupling term might take the bilinear form

Vstretch�bend ¼ kSBðr � r0Þðy� y0Þ ð4-28Þ

    cis     gauche    skew     trans   

Figure 4-20 Rotamers (rotational confor-

mers) of 1-Butene (Nevins, Chen, and

Allinger, 1996).
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where r is the bond length and y is the simple angle. There are many possible cross

terms

Vstretch�stretch ¼ kSSðr � r0Þðr0 � r00Þ
Vbend�bend ¼ kBBðy� y0Þðy0 � y00Þ ð4-29Þ

Vstretch�torsion ¼ kSTðr � r0Þ cos no

and others. It soon becomes evident that there are many terms that can be included

in the energy equation, Eq. (4-13), and the question is how many to accept and how

many to reject. Fewer terms are used in the energy equation for large molecules like

proteins that tax computer resources. Many terms are used when one wants an

accurate and detailed model of relatively small molecules or to calculate spectra,

which demand a knowledge of not only the location of a potential well but also its

depth and shape as well.

PROBLEMS

1. A 1.00-g mass connected to a fixed point by a spring oscillates at a frequency

of 10.0 Hz. What is the Hooke’s law force constant of the spring? Give units.

2. A slender vertical filament of negligible mass supports a 0.200-g mass at one

end and is fixed at the other end. A force of 0.0800 N displaces the mass

0.0200 m. The mass executes simple harmonic motion as the filament bends.

What is the bending constant KB of the filament? What is the frequency n of

the motion in Hz? What is the period t of oscillation?

3. The balance wheel of a chronometer is constructed so that its entire mass of

0.100 g may be considered to be concentrated in a ring of radius 0.600 cm.

What is its moment of inertia?

4. The balance wheel in Problem 3 is driven by a coiled spring called a hairspring.

The wheel executes simple harmonic angular motion between the two angular

limits shown by the double arrow in Problem 3. Its oscillation over the marked

excursion is complete every 0.500 s. What is the torsion constant k of the

spring?

5. Write the rotational analog of Hooke’s law for the torque t driving the

oscillation in Problem 3. Write the rotational analog of Newton’s second

law. Combine the two laws to obtain the rotational analog of the Newton–

Hooke equation, Eq. (4-1).

6. Calculate the reduced mass of D35Cl where D is the deuterium isotope of

hydrogen (isotopic weight 2.014 atomic mass units) and 35Cl is the 35 isotope

of chlorine (isotopic weight 34.97 atomic mass units).
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7. Gaseous H35Cl has a strong absorption band centered at about l ¼
3:40� 10�6 m in the infrared portion of the electromagnetic radiation spec-

trum. On the assumption that D bonds to Cl with the same strength that H does,

predict the frequency of vibration in Hz and rad�1 of D35Cl.

8. Under what circumstances would the maximum speed be numerically equal to

the maximum excursion for a simple harmonic oscillator?

9. Given the O��H bond distance calculated from the MM3 parameter set for the

water molecule as 0.947 Å ���� 94.7 pm and the H��O��H bond angle of 105
,
what is the distance between the H nuclei in H2O in the gas phase?

10. Given the bond distances and internuclear angle in Problem 9, what is the

moment of inertia of the H2O molecule about its principal axis through the

oxygen atom (the y-axis in File 4-5)?

11. Calculate the moment of inertia about the x-axis of ethylene.

12. Convert the three moments of inertia in File 4-3 to MKS units.

13. What is the moment of inertia of acetylene about its C��C axis?

14. Using TINKER and the MM3 force field, determine the S��H bond length and

the H��S��H bond angle in H2S. Compare these values with what you found for

the H2O molecule. Compare them with the values you find in a general

chemistry textbook. Using PCMODEL, with the MMFF94 force field, deter-

mine the S��H bond length and the H��S��H bond angle in H2S. Compare these

values with what you found for the H2O molecule. Compare them with the

values you find in a general chemistry textbook.
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C H A P T E R

5
Molecular Mechanics II:

Applications

The three main goals of a molecular mechanics program for small molecules are

calculation of geometry, energy, and spectral absorbances due to vibrational

excitation. Hagler (Hwang, Stockfish, and Hagler, 1994) has categorized force

fields into class 1, intended to achieve the first of these increasingly demanding

objectives; class 2, to achieve the first two; and class 3 to achieve all three

objectives. Research and development on class 3 force fields is an active enterprise,

as is extension of class 1 and class 2 force fields to less common molecules and

larger, biologically important species. We have already introduced geometry

determination in Chapter 4.

Coupling

We shall treat coupling of modes of motion in some detail because there are

fundamental mechanical and mathematical topics involved that will be useful to us

in both MM and quantum mechanical calculations. In the treatment of coupled

harmonic oscillators, matrix diagonalization and normal coordinates are encoun-

tered in a simple form.

Computational Chemistry Using the PC, Third Edition, by Donald W. Rogers

ISBN 0-471-42800-0 Copyright # 2003 John Wiley & Sons, Inc.
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Two harmonic oscillators consisting of identical masses driven by identical

springs have identical frequencies of oscillation (Fig. 5-1a). If they are connected

by a third spring as in Fig 5-1b, their motions are no longer independent. The

tension on the spring accelerating one mass depends on the location of the other

mass on the x-axis. The motions of m1 and m2 are said to be coupled. The

excursions x1 and x2 in Fig. 5-1 represent displacements from an equilibrium

configuration on the x-axis.

Suppose, for simplicity, that the masses in Fig. 5-1b are the same, m1 ¼ m2 ¼ m,

and all three springs are the same, but velocities and displacements of the masses

may not be the same. Let one mass be displaced by a distance x1 from its

equilibrium position while the other is displaced by a distance x2. The only place

the potential energy V

V ¼
ð
�F dx ¼

ð
kxi dxi ¼ 1

2
kx2i ð5-1Þ

can be stored is in the springs. V is the sum of the potential energies of the three

springs, two lateral and one coupling spring

V ¼ 1
2
kx21 þ 1

2
kðx1 � x2Þ2 þ 1

2
kx22 ð5-2Þ

By hypothesis, the force constant of the coupling spring is the same as k for the

other two springs, so the potential energy can be written

V ¼ 1
2
kx21 þ 1

2
kðx21 � 2x1x2 þ x22Þ þ 1

2
kx22

¼ kx21 � kx1x2 þ kx22 ð5-3Þ

Note especially the center term in Eq. (5-3). Physical coupling of the masses leads

to a term dependent on both x1 and x2. Equation (5-3) as written is not separable

into an equation only in x1 and an equation only in x2.

a

b
x1 x2

Figure 5-1 (a) Uncoupled and (b) Coupled Harmonic Oscillators.
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From Newton’s second law, noting that more than one force may influence each

mass,
P

f ¼ ma where a is the acceleration a ¼ dv
dt
¼ d2x

dt2
. For the coupled masses

m€xx1 ¼ ma1 ¼
X
i

fi

m€xx2 ¼ ma2 ¼
X
j

fj
ð5-4Þ

We have used a common notation from mechanics in Eq. (5-4) by denoting velocity,

the first time derivative of x, _xx, and acceleration, the second time derivative, €xx. In a

conservative system (one having no frictional loss), potential energy is dependent

only on the location and the force on a particle qV
qx ¼ �fx; hence, by differentiating

Eq. (5-3),X
i

fi ¼ �2kx1 þ kx2X
j

fj ¼ �2kx2 þ kx1
ð5-5Þ

which leads to

m€xx1 ¼ �2kx1 þ kx2

m€xx2 ¼ �2kx2 þ kx1
ð5-6Þ

and

€xx1 þ 2
k

m
x1 � k

m
x2 ¼ 0

€xx2 þ 2
k

m
x2 � k

m
x1 ¼ 0

ð5-7Þ

Let us take a pair of trial solutions on the reasonable guess that, however the

coupling spring influences the motion, the masses will oscillate harmonically.

x1 ¼ A1 coso t

x2 ¼ A2 coso t
ð5-8Þ

with an unknown angular frequency o. Because the masses and the springs are the

same, the system is symmetrical and we do not need to worry about different

frequencies for m1 and m2. This leads to

_xx1 ¼ d

dt
A1 coso t ¼ �A1o sino t

_xx2 ¼ d

dt
A2 coso t ¼ �A2o sino t

€xx1 ¼ � d

dt
A1o sino t ¼ �A1o2 coso t

€xx2 ¼ � d

dt
A2o sino t ¼ �A2o2 coso t
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and

�o2A1 coso t þ 2k

m
A1 coso t � k

m
A2 coso t ¼ 0

�o2A2 coso t þ 2k

m
A2 coso t � k

m
A1 coso t ¼ 0

ð5-9Þ

for the equations of motion, Eqs. (5-6) or (5-7). Dividing by coso t, we get

2k

m
A1 � o2A1 � k

m
A2 ¼ 0

2k

m
A2 � o2A2 � k

m
A1 ¼ 0

ð5-10Þ

This is a pair of simultaneous equations in A1 and A2 called the secular equations

2k

m
� o2

� �
A1 � k

m
A2 ¼ 0

� k

m
A1 þ 2k

m
� o2

� �
A2 ¼ 0

ð5-11Þ

which has, as its secular determinantal equation

2k

m
� o2

� �
� k

m

� k

m

2k

m
� o2

� �
��������

�������� ¼ 0 ð5-12Þ

We recall that expansion of a 2� 2 determinant follows the rule
�� a b
c d

�� ¼ ad � bc.

Expansion of the determinant in Eq. (5-12) leads to the quadratic equation

2k

m
� o2

� �2

� k

m

� �2

¼ 0 ð5-13Þ

which has two solutions for the square of the frequency of oscillation

2k

m
� o2 ¼ 	 k

m

and

o2 ¼ 2k

m
� k

m
ð5-14Þ
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The two solutions for o2 are

o2 ¼ 3k

m
;
k

m
ð5-15Þ

Two solutions for o2 lead to four solutions for o

o1 ¼
ffiffiffiffiffi
3k

m

r
; o2 ¼ �

ffiffiffiffiffi
3k

m

r
; o3 ¼

ffiffiffiffi
k

m

r
; o4 ¼ �

ffiffiffiffi
k

m

r
ð5-16Þ

The general solutions for x1 and x2 are superpositions, that is, linear combinations

of all of the solutions we have found

x1 ¼ A1 coso1 t þ A0
1 coso2 t þ A00

1 coso3 t þ A000
1 coso4 t

x2 ¼ A2 coso1 t þ A0
2 coso2 t þ A00

2 coso3 t þ A000
2 coso4 t

ð5-17Þ

but the amplitude constants in Eq. (5-17) are not all independent. We can get rid of

some of them.

Going back to the secular Eqs. (5-10) or (5-11),

2k

m
A1 � o2A1 ¼ k

m
A2

2k

m
A2 � o2A2 ¼ k

m
A1

ð5-18Þ

substituting o2 ¼ k=m,

2k

m
A1 � k

m
A1 ¼ k

m
A2

k

m
A1 ¼ k

m
A2

ð5-19Þ

which can be true only if A1 ¼ A2. Substituting o2 ¼ 3 k=m gives A00
1 ¼ �A00

2. The

same calculation for all eight amplitudes yields A1 ¼ A2;A
0
1 ¼ A0

2;A
00
1 ¼ �A00

2, and

A000
1 ¼ �A000

2 . These simplifications lead to

x1 ¼ A1 coso1 t þ A0
1 coso2 t þ A00

1 coso3 t þ A000
1 coso4 t

x2 ¼ A1 coso1 t þ A0
1 coso2 t � A00

1 coso3 t � A000
1 coso4 t

ð5-20Þ

There are now four constants rather than eight. We expect four constants from

two second-order differential equations. Dropping the unnecessary subscript 1 and

replacing the cumbersome ‘‘prime notation’’,

x1 ¼ A coso1 t þ B coso2 t þ C coso3 t þ D coso4 t

x2 ¼ A coso1 t þ B coso2 t � C coso3 t � D coso4 t
ð5-21Þ
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Normal Coordinates

The procedure we followed in the previous section was to take a pair of coupled

equations, Eqs. (5-6) or (5-17) and express their solutions as a sum and difference,

that is, as linear combinations. (Don’t forget that the sum or difference of solutions

of a linear homogeneous differential equation with constant coefficients is also a

solution of the equation.) This recasts the original equations in the form of

uncoupled equations. To show this, take the sum and difference of Eqs. (5-21),

X1 ¼ x1 þ x2

X2 ¼ x1 � x2
ð5-22Þ

we arrive at

X1 ¼ 2ðA coso1 t þ B coso2 tÞ
X2 ¼ 2ðC coso3 t þ D coso4 tÞ

ð5-23Þ

By the same double differentiation that gave us Eqs. (5-10),

€XX1 ¼ �o2
1X1 ð5-24aÞ

and

€XX2 ¼ �o2
3X2 ð5-24bÞ

which are just the equations we would get for uncoupled oscillators (Fig. 5-1a),

except that the coordinates have undergone the linear transformations Eqs. (5-22).

We should not be surprised that a transformation of the coordinate system leaves

the solutions unchanged in Eqs. (5-22), leading to Eqs. (5-24). These new

coordinates, X1 and X2, are called the normal coordinates.

Normal Modes of Motion

Let us take a 1.00-kg oscillator and couple it with an identical oscillator by means

of a coupling spring of k ¼ 1:00Nm�1. The force constants of the lateral springs

are also 1:00Nm�1. Now the positive, real solutions for the frequencies are, from

Eq. (5-15)

o1;o3 ¼
ffiffiffiffiffiffi
k

m
;

r ffiffiffiffiffi
3k

m

r
¼

ffiffiffi
1

p
;
ffiffiffi
3

p

(Negative frequencies are physically meaningless.) Does this mean that one mass

oscillates at 1:00 rad s�1 and the other at
ffiffiffi
3

p ¼ 1:73 rad s�1? Not exactly. Behavior

depends on the initial conditions. In the special case that both masses start from rest
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at the same displacement in the same direction, they will execute synchronous

motion as in Fig. 5-2a, at 1:00 rad s�1. If the initial displacements are equal and

opposite (starting from rest also), they will execute antisynchronous motion at a

frequency of
ffiffiffi
3

p ¼ 1:73 rad s�1.

Two degrees of freedom lead to two modes of motion. These two modes of

motion, synchronous and antisynchronous, are the normal modes of motion for

this system. If only synchronous motion is excited, the antisynchronous mode

will never contribute to the motion. The same is true for the pure antisynchronous

mode (Fig. 5-2b); there will never be a synchronous contribution. Under these

conditions, but only under these conditions, energy does not pass from one mass to

the other.

In general, energy does pass from one normal mode to the other. If only one

mass is displaced to amplitude A and released, it will excite motion in the second

mass through the coupling spring until the second mass is oscillating with

amplitude A. But, in the process, the first mass gradually loses all its energy until

it stops. (Total energy is conserved.)

When the first mass has stopped, the situation is reversed. The second mass,

oscillating at amplitude A, excites motion in the first mass, gradually losing its

own energy, until it has excited the first mass back to amplitude A. This energy

exchange, back and forth, goes on for ever (in the absence of friction). The envelope

of amplitude of either mass in this exchange of energy is sinusoidal, with a

frequency less than that of the individual masses. The frequency of transfer from

one mode to the other is called the beat frequency.

If the masses are displaced in an arbitrary way or arbitrary initial velocities are

given to them, the motion is asynchronous, a complex mixture of synchronous and

antisynchronous motion. But the point here is that even this complex motion can be

broken down into two normal modes. In this example, the synchronous mode of

motion has a lower frequency than the antisynchronous mode. This is generally

true; in systems with many modes of motion, the mode of motion with the highest

symmetry has the lowest frequency.

. .a

. .b

Figure 5-2 Synchronous and Antisynchronous Modes of Motion in a Bound, Two-Mass

Harmonic Oscillator.
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An Introduction to Matrix Formalism for Two Masses

The general case of two masses bound by two lateral springs k1 and k2, and coupled

by a coupling spring, kc in Fig. 5-2b, has

m1€xx1 ¼
X
i

fi ¼ �k1x1 � kcðx1 � x2Þ ¼ � k1 þ kcð Þx1 þ kcx2

m2€xx2 ¼
X
j

fj ¼ �k2x2 � kcðx2 � x1Þ ¼ kcx1 � k2 þ kcð Þx2
ð5-25Þ

Eqs. (5-25) can be written in matrix form

m1 0

0 m2

� �
€xx1
€xx2

� �
¼ � k1 þ kcð Þ kc

kc � k2 þ kcð Þ
� �

x1
x2

� �
ð5-26Þ

or

M
€xx1
€xx2

� �
¼ K

x1
x2

� �
ð5-27Þ

The rules of matrix-vector multiplication show that the matrix form is the same as

the algebraic form, Eq. (5-25)

M€xx ¼ Kx ¼ � k1 þ kcð Þ kc
kc � k2 þ kcð Þ

� �
x1
x2

� �
¼ � k1 þ kcð Þx1 þ kcx2

kcx1 � k2 þ kcð Þx2
ð5-28Þ

where M and K are matrices and lower-case bold €xx and x designate vectors

€xx ¼ €xx1
€xx2

� �

and

x ¼ x1
x2

� �

Interest now centers on the matrix K. Equation (5-26) is general, but to introduce

the method, let all springs have the same force constant. We have the matrix arising

from the equations of motion,

K ¼ �2k k

k �2k

� �
¼ k

�2 1

1 �2

� �
ð5-29Þ

which is the problem for symmetric and antisymmetric vibration that we have

already solved.
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If the coupling spring is missing [kc ¼ 0 in Eq. (5-28)], we get a unique diagonal

matrix

K ¼ �k 0

0 �k

� �
¼ k

�1 0

0 �1

� �
ð5-30Þ

leading to a pair of uncoupled equations,

m1€xx1 ¼ �kx1

m2€xx2 ¼ �kx2

Because the masses are the same, these equations describe independent oscillators

with identical frequencies, as in Fig. 5-1a.

These matrices, for coupled and uncoupled oscillators,

�2 1

1 �2

� �
ð5-31aÞ

and

�1 0

0 �1

� �
; ð5-31bÞ

have the roots

ð�1;�3Þ; coupled and ð�1;�1Þ; uncoupled

Exercise 5-1

Find the roots of

�2 1

1 �2

� �

Solution 5.4.1

Set

�2� z 1

1 �2� z

����
���� ¼ 0

where z is the root. This leads to the quadratic equation

ð�2� zÞ2 � 1 ¼ 0

ð�2� zÞ ¼ �1

z ¼ �3;�1

Comparison with Eq. (5-15) enables us to identify the roots of the K matrix as z ¼ �o2.
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Taking the roots from Exercise 5-1, we can write them as the elements of a

diagonal matrix,

m1 0

0 m2

� �
€XX1

€XX2

� �
¼ m

1 0

0 1

� �
€XX1

€XX2

� �
¼ m

€XX1

€XX2

� �
¼ �k

1 0

0 3

� �
X1

X2

� �
ð5-32Þ

where the simplifying assumption m1 ¼ m2 permits factoring m from the diagonal

matrix M. The ordinary algebraic form of Eq. (5-32) is

m€XX1 ¼ �kX1

m€XX2 ¼ �3kX2

ð5-33Þ

By comparison to Eqs. (5-23), it is evident that

o2
1 ¼ � k

m
ð5-34aÞ

and

o2
2 ¼ � 3k

m
ð5-34bÞ

as found in Eq. (5-15). We have uncoupled the two original equations by

diagonalizing the K matrix. Diagonalization reorients the coordinates to coincide

with the vibrational modes, that is, it converts arbitrary coordinates to normal

coordinates, Xi. We have determined the symmetric and antisymmetric frequencies

by a matrix formalism that is readily generalizable to more complicated systems.

Solving a determinantal equation and finding the roots of the corresponding matrix

Eq. (5-32) amount to two ways of doing the same thing; we are solving

simultaneous equations of the form Eqs. (5-11).

The Hessian Matrix

A single harmonic oscillator constrained to the x-axis has one force constant k

that—stretching a point—we might think of k as a 1� 1 force constant matrix. Two

oscillators that interact with one another lead to a 2� 2 force constant matrix

k11 k12
k21 k22

� �
ð5-35Þ

where the lateral spring 1 controlling mass 1 has a force constant k11, the other

lateral spring has a force constant k22, and the connecting spring has a force

constant k12 ¼ k21.

In a molecule, these latter two force constants are equal to one another because

the coupling of atom 1 for atom 2 is the same as the coupling of atom 2 for atom 1.
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The force constants k12 and k21 are the off-diagonal elements of the matrix. If they

are zero, the oscillators are uncoupled, but even if they are not zero, the K matrix

takes the simple form of a symmetrical matrix because k12 ¼ k21. The matrix is

symmetrical even though k11 may not be equal to k22.

The force constants are second derivatives of the potential energy with respect to

infinitesimal displacements of mass 1 and mass 2.

q2V
qx2

1

q2V
qx1qx2

q2V
qx2qx1

q2V
qx2

2

0
@

1
A ð5-36Þ

This kind of matrix is called a Hessian matrix. The derivatives give the curvature of

Vðx1; x2Þ in a two-dimensional space because there are two masses, even though

both masses are constrained to move on the x-axis. As we have already seen, these

derivatives are part of the Taylor series expansion

f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ f 00ðaÞ
2

ðx� aÞ2 þ � � � þ f nðaÞ
n!

ðx� aÞn þ � � �

in a one-dimensional x-space. If we drop all terms except the quadratic in the

harmonic approximation and expand the function about the equilibrium atomic

position a ¼ x0,

VðxÞ ¼ 1
2

d2V

dx2

� �
x0

ðx� x0Þ2

as in Eq. (4-15) for one mass. For two masses in a one-dimensional space

dV ¼ 1
2

X2
i;j

d2V

dqiqj

� �
0

qiqj ð5-37Þ

where qi and qj are mass-weighted generalized displacement coordinates

q1 ¼ ffiffiffiffiffiffi
m1

p
�x1; q2 ¼ ffiffiffiffiffiffi

m1

p
�y1; q3 ¼ ffiffiffiffiffiffi

m1

p
�z1; q4 ¼ ffiffiffiffiffiffi

m2

p
�x2; . . . ð5-38Þ

Mass weighting the generalized displacement coordinates qi and qj retains the form

of Eq. (5-37) even when the actual masses are not unit masses.

If there were three masses moving on the x-axis and interacting with one another,

the Hessian matrix would be 3� 3

k11 k12 k13
k21 k22 k23
k31 k32 k33

0
@

1
A ð5-39Þ

Two coupled masses oscillating in a plane have four degrees of freedom, x1, y1,

x2, and y2 and so on (Fig. 5-3).
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The Hessian matrix is

q2V
qx2

1

q2V
qy1qx1

q2V
qx2qx1

q2V
qy2qx1

q2V
qx1qy1

q2V
qy2

1

q2V
qx2qy1

q2V
qy2qy1

q2V
qx1qx2

q2V
qy1qx2

q2V
qx2

2

q2V
qy2qx2

q2V
qx1qy2

q2V
qy1qy2

q2V
qx2qy2

q2V
qy2

2

0
BBBBBBB@

1
CCCCCCCA

ð5-40Þ

A Hessian matrix for a molecule containing n atoms is more complicated. In the

most general case, it is a very large 3n� 3n matrix brought about because each

atom moves in Cartesian 3-space. This large matrix can be constructed by starting

out with elements for atom 1 in the first 3 rows (x, y, and z) and the first 3 columns

of the matrix. This results in the 3� 3 submatrix at the top left of the Hessian

matrix, which gives the potential energy increase for atom 1 moving in its own

3-space, uncoupled to any other atom. The 3� 3 submatrix immediately to the

right, occupying rows 1 through 3 and columns 4 through 6, describes the energy of

interaction (coupling) of atoms 1 and 2.

q2V
qx2

1

q2V
qy1qx1

q2V
qz1qx1

q2V
qx1qy1

q2V
qy2

1

q2V
qz1qy1

q2V
qx1qz1

q2V
qy1qz1

q2V
qz2

1

q2V
qx2qx1

q2V
qy2qx1

q2V
qz2qx1

q2V
qx2qy1

q2V
qy2qy1

q2V
qz2qy1

q2V
qx2qz1

q2V
qy2qz1

q2V
qz2qz1

� � � etc:

q2V
qx1qx2

q2V
qy1qx2

q2V
qz1qx2

q2V
qx1qy2

q2V
qy1qy2

q2V
qz1qy2

q2V
qx1qz2

q2V
qy1qz2

q2V
qz1qz2

q2V
qx2

2

q2V
qy2qx2

q2V
qz2qx2

q2V
qx2qy2

q2V
qy2

2

q2V
qz2qy2

q2V
qx2qz2

q2V
qy2qz2

q2V
qz2

2..
.

etc:

. .
.

etc:

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

ð5-41Þ

1

2

y

x

Figure 5-3 Coupled Harmonic Oscillators in

the x-y Plane.
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Diagonally below and to the right of the matrix containing only 1,1 subscripts is a

3� 3 matrix containing only 2, 2 subscripts. It describes atom 2 independent of

coupling. Continuing down the diagonal, one encounters a submatrix for atoms 3, 4,

and so on. These are called block matrices. If all coupling submatrices are set equal

to zero, only the block diagonal matrix remains.

etc.

Diagonalization of a block diagonal matrix is much easier and faster than

diagonalization of the full matrix for structures significantly different from the

equilibrium geometry because much of the work has already been done by setting

the off-diagonal blocks to zero. This works because the bonding forces are much

greater than the coupling forces. The coupling forces are not zero, however, and

cannot be completely ignored in an accurate calculation. MM programs may be

specifically written to begin by optimizing the block diagonal matrix and to switch

over to a full matrix optimization when the geometry has been brought near the

equilibrium geometry as determined by the size of the steps taken toward the

equilibrium geometry.

Why So Much Fuss About Coupling?

The subject of force-coupled harmonic oscillation, leading inevitably to normal

modes of motion and to the Hessian matrix, has been developed in far greater detail

than other topics in molecular mechanics because the mathematical formalism is

basic to almost everything we do in molecular computational chemistry, extending

well beyond the classical mechanics of atomic vibrations. Virtually every mathe-

matical technique described in this book uses some kind of minimization: minimi-

zation of the error in statistics, minimization of classical mechanical energy in

molecular mechanics, or minimization of the electronic energy in molecular orbital

calculations. Less frequently, in the study of reactive intermediates or excited

species, a ‘‘saddle point’’ is sought. The term optimization can be used to include

techniques that seek saddle points as well as minima. The term stationary point is

used to denote the result of a generalized optimization procedure.
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Generalizing the Newton–Raphson method of optimization (Chapter 1) to a

surface in many dimensions, the function to be optimized is expanded about the

many-dimensional position vector of a point x0

f ðxÞ ¼ f ðx0Þ þ gTðx� x0Þ þ 1
2
ðx� x0ÞTHðx� x0Þ ð5-42Þ

where g is the gradient vector corresponding to the first derivative of a one-

dimensional expansion and H is the Hessian matrix that corresponds to the second

derivative. For a small gradient, this leads to (Jensen, 1999)

ðx� x0Þ ¼ �gH�1 ð5-43Þ

If the coordinate system has been transformed to the normal coordinate system by a

unitary transformation U, the Hessian is diagonal and

�x0 ¼
X
i

�xi ð5-44Þ

or

�x0 ¼ fi

ei
ð5-45Þ

where fi is the projection of the gradient along the Hessian eigenvector with the

eigenvalue ei.
Having filled in some of the mathematical foundations of optimization proce-

dures, we shall return to the practical calculation of quantities of everyday use to

the chemist.

The Enthalpy of Formation

We shall modify the minimal ethylene file minimal.mm3 by placing an identifying

name (Ethylene) starting in the first column of the first row of the input file and by

placing a switch 1 in column 65 of the second line. This switch causes the

enthalpy of formation option to be activated. An additional block of energy and

enthalpy information, shown in File Segment 5-1, is generated by the MM3

calculation and added to the output file. The term ‘‘heat of formation,’’ more

properly ‘‘enthalpy of formation,’’ means the enthalpy change �f H
298 brought

about by the reaction forming a molecule from its elements in the standard state.

Standard temperature is usually taken as 298.15 K. For example, �f H
298ðetheneÞ is

the enthalpy of the reaction

2CðgrÞ þ 2H2ðgÞ ¼ C2H4ðgÞ
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at p ¼ 1:000 atm and T ¼ 298:15 K where gr indicates graphitic carbon. The

experimental value for this reaction (�f H
298ðetheneÞ ¼ 52:5� 0:4 kJmol�1 ¼

12:55� 0:08 kcalmol�1; Pedley et al., 1986) is obtained indirectly from heats

(energies) of combustion of the reactants and products.

HEAT OF FORMATION AND STRAIN ENERGY CALCULATIONS

(UNIT¼KCAL/MOLE)

(#¼TRIPLE BOND)

BOND ENTHALPY (BE) AND STRAINLESS BOND ENTHALPY (SBE)

CONSTANTS AND SUMS

BOND OR STRUCTURE NO —NORMAL— –STRAINLESS–

C����C SP2-SP2 1 26.430 26.43 24.503 24.50

C��H OLEFINIC 4 �4.590 �18.36 �3.460 �13.84
- - - - - - - - - - - - - -

BE¼8.07 SBE¼10.66

PARTITION FUNCTION CONTRIBUTION (PFC)

CONFORMATIONAL POPULATION INCREMENT (POP) 0.00

TORSIONAL CONTRIBUTION (TOR) 0.00

TRANSLATION/ROTATION TERM (T/R) 2.40

PFC¼2.40

- - - - - - -

HEAT OF FORMATION (HF0)¼EþBEþPFC 13.07

STRAINLESS HEAT OF FORMATION FOR SIGMA SYSTEM (HFS)

HFS¼SBEþT/RþESCF�ECPI 13.06

INHERENT SIGMA STRAIN (SI)¼EþBE�SBE 0.01

SIGMA STRAIN ENERGY (S)¼POPþTORþSI 0.01

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

End of Ethylene

Total cpu time is 2.20 seconds.

File Segment 5-1 Heat of Formation and Strain Energy Output.

At the top of File Segment 5-1 is a heat of formation information block. Two

sums are listed: One is a sum of normal bond enthalpies for ethylene, and the other

is a sum selected from a parameter set of strainless bonds. Both sets of bond

enthalpies have been empirically chosen. A group of molecules selected as

‘‘normal’’ generates one parameter set, and a group supposed to be ‘‘strainless’’

is selected to generate a second set of strainless bond enthalpies designated SBE in

File Segment 5-1. The subject of parameterization has been treated in detail in

Chapter 4. See Computer Projects 3-6 and 3-7 for the specific problem of bond

enthalpies.

After initial estimates of BE and SBE have been made, application to a larger set

of test molecules suggests adjustments to bring about the smallest discrepancy

between the experimental and calculated values of �f H
298 (or other selected
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criteria) for the entire set. The success or failure of bond energy assignment is

determined, of course, not so much by one’s ability to reproduce known �f H
298

values within the data set from which BEs are drawn but by the more important

practical goal of correctly predicting unknown �f H
298 values from outside the test

data set, leading to useful experiments and industrial applications.

Once the BEs and SBEs have been decided upon, the normal functioning of the

MM program causes each bond to be multiplied by the number of times it appears

in the computed molecule to find its contribution to the total bond enthalpy. In

ethylene, 26:43þ 4ð�4:59Þ ¼ 8:07 kcalmol�1. In File Segment 5-1, this sum is

denoted BE. This whole procedure is essentially a conventional bond energy

calculation.

The difference between an MM calculation of the enthalpy of formation and a

bond energy scheme comes in the steric energy, which was shown in File 4-3. The

sum of compression, bending, etc. energies is the steric energy, E ¼ 2:60 kcal mol�1

in File 4-3. This is added to BE, as is the partition function energy contribution (see

below), PCE ¼ 2:40 kcal mol�1, to yield

8:07þ 2:60þ 2:40 ¼ 13:07 kcal mol�1

for the enthalpy of formation �f H
298 of ethylene. The same thing is done with

the strainless bond energies except that there is no steric energy E to add. In

ethylene, the strain energy is essentially zero, therefore normal �f H
298 is essen-

tially the same as strainless �f H
298. This is not true in general.

The Partition Function Contribution. If we ignore vibrational motion for the

moment, all translational and rotational modes of motion are fully excited, leading

to an energy contribution of 1
2
RT per degree of freedom per mole or 3RT. Taking

the ideal gas approximation for granted in calculating molar enthalpy (at this

level, intermolecular interactions are assumed to be zero), H is RT higher than the

energy. The total is 4RT. This accounts for the partition function contribution

PFC ¼ 2:40 kcal mol�1.

The vibrational energy over all chemical bonds, i

U ¼
X

hni 1
2
þ 1

ehni=kT � 1


 �
ð5-46Þ

would normally be added to this sum. This term is difficult to evaluate, and,

depending on the way in which the bond enthalpy parameters are obtained, it may

be an overcalculation anyway. If bond energies are taken from �f H
298, as they are

for MM3, they already contain the thermal energy of vibration.

Finally, the system ‘‘knows’’ to print End of Ethylene at the end of the program

because we included the name Ethylene in the first line of the input file.
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Enthalpy of Reaction

If one knows the enthalpy of formation at 298 K of all the constituents of a chemical

reaction, one knows the enthalpy of reaction, �rH
298. The calculation rests on the

law that thermodynamic functions, of which enthalpy is one, sum to zero around

any cyclical path, formally,

�rH
298 ¼

X
�f H

298ðproductsÞ�
X

�f H
298ðreactantsÞ ð5-47Þ

For example, in the hydrogenation of ethylene

CH2����CH2 þ H2 ! CH3��CH3

a diagram with enthalpy as the vertical axis can be drawn as in Fig. 5-4.

Because there is no natural zero point for the enthalpy in classical thermo-

dynamics, we are free to define one, but only one, level in the enthalpy level

diagram. The enthalpy levels in Fig. 5-4 are relative to a defined level of zero for the

elements. The cyclical path includes�f H
298 values that are up for a positive�H298

and down for a negative�H298. The horizontal lines represent the standard states of

ethylene, elements, and ethane. The rightmost arrow represents the transition from

the ethylene standard state to the ethane standard state �rH
298, the contribution

from elemental H2ðgÞ being zero. Thus the sum of the arrow lengths for hydro-

genation of ethylene has a magnitude of 12:52þ 19:75 ¼ 32:27 kcal mol�1

in agreement with Eq. (5-47) and the direction is down, so �rH
298 ¼

�32:27 kcalmol�1 by this calculation. This reaction was studied experimentally

with great care many years ago by Kistiakowsky (Kistiakowsky and Nickle, 1951),

who found that �rH
298 ¼ �32:60� 0:05 kcal mol�1. One should not expect this

extraordinary precision and agreement between calculations and experimental

measurements in general. Uncertainties of experiments and calculations are rarely

better than 0:5 kcal mol�1; hence, the uncertainty in a calculated �f H
298 will not

normally be better than the square root of the sum of squares of uncertainties in

�f H
298, that is, not better than �0:7 kcalmol�1 for a simple A ! B reaction.

12.5

–19.7

–32.2

ethene

elements

ethane

Figure 5-4 Enthalpy Diagram for Hydrogena-

tion of Ethylene. The �f H
298 values were

calculated with MM4 (Allinger et al., 1996;

Nevins et al., 1996).
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COMPUTER PROJECT 5-1 j The Enthalpy of Isomerization of

cis- and trans-2-Butene

Isomerizations are even simpler than hydrogenations inasmuch as they involve only

the transformation of one isomer into the other. An example is the transformation of

cis-2-butene to trans-2-butene

cis ! trans

The goal of this project is to determine the enthalpies of formation of cis- and trans-

2-butene and to calculate the enthalpy of isomerization �isomH
298 between them.

Remarkably accurate experimental results have been obtained, also by Kistia-

kowsky (Conant and Kistiakowsky, 1937), which permit indirect calculation of the

enthalpy change of this isomerization �isomH
298 The enthalpy diagram for

isomerization of 2-butene is given in Fig. 5-5. We shall use TINKER and

PCMODEL to find the length of each arrow in Fig. 5-5. We shall also use the

PCMODEL GUI, a powerful tool for file construction.

Procedure. Using graph paper with Fig. 4-5 as a guide, construct the approximate

carbon atom skeletons of cis- and trans-2-butene,

C C
CC

and

C C
C

C

Because of its free format, the input file for TINKER is easier to construct by hand

than the input file for Program MM3. Place the hydrogen atoms at plausible

distances from the carbon atoms to produce two input files for determining the

elements

2-butenes

∆isomH298
Figure 5-5 Enthalpy Changes in

Isomerization of 2-Butene.
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steric energies of the two butene isomers using the MM3 force field. Store the input

files in the TINKER directory as .xyz files, for example, cbu2.xyz for cis-2-butene.

Carry out this computation using 1) Program TINKER (force field MM3) and

2) Program MM3 (force field MM3).

1) TINKER. Go to your DOS operating system, TINKER directory. Execute the

command minimize. Respond to the choices offered:

Enter Cartesian Coordinate File Name: cbu2.xyz

Enter Potential Parameter File Name: mm3
Enter RMS Gradient per Atom Criterion [0.01]: Enter (this is the default option)

Take the ‘‘Final Function Value’’ of TINKER as the steric energy for this

calculation. Compare the results with each other and with a standard value from a

good elementary organic chemistry text (e.g., Ege, 1994). Calculate �isomH
298

for the reaction cis ! trans and compare it with a standard text and with

Kistiakowsky’s original value. Kistiakowsky’s original work was carried out at

355 K, but the temperature difference between 298 K and 355 K cancels for this

isomerization.

The geometric output can be found as you would find any other file in DOS

D:\tinker>dir cbu*.*
Directory of D:\tinker

CBU2 XYZ 287 02-16-02 2:04p cbu2.xyz
CBU2~1 XYZ 815 10-25-02 6:48a cbu2.xyz_2

2 file(s) 1,102 bytesD:\tinker>dir cbu2*.*
You can see the optimized geometry using the edit command.

D:\tinker>edit cbu2~1.xyz

2) The PCMODEL Interface. Using the draw option of the PCMODEL inter-

face, construct the carbon atom skeleton of cis-2-butene. Use Add_B to add a bond

in the 2-3 position, thereby making it a double bond. Click on H/AD and observe

that the correct number of hydrogen atoms appears at plausible distances and angles

to the carbon atoms. Hydrogen atoms at either end may not be visible because of the

hydrogens in front of them. Later, we shall learn how to rotate the molecular image

in three-dimensional space so as to make all atoms visible. This is not the optimized

structure of cis-2-butene; it is the input or starting structure before minimization.

If you are running an updated version (V 8.0) of PC Model, click on force

field!mm3. Omit this step for older versions. Click on Analyze (or compute

depending on the version of PCMODEL) to obtain a menu of options. Select

minimize. The geometry changes can be seen on the screen and a sequence of

numbers appears in the right panel of the CRT screen, ending in Hf, the enthalpy of

formation. This is the PCMODEL-MM3 calculated value of �f H
298 for cis-2-

butene. Repeat the entire procedure for trans-2-butene and calculate the required

�isomH
298.
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Minimize cis-2-butene. From the View menu, select Pluto. Your screen image

should resemble Fig. 5-6. Go to File and Print your pluto drawing. Repeat with

trans-2-butene. Include the structure drawings with your report. You can create

pluto drawings for any of the stick figures in future computer projects. There are

other graphical options.

Enthalpy of Reaction at Temperatures 6¼ 298 K

If one knows �rH
298 and the heat capacities of all the constituents in a chemical

reaction as a function of temperature, one can calculate �rH
298 at any temperature.

For a simple A ! B reaction, suppose that the heat capacity CP of A is larger than

the heat capacity for B. The enthalpy of A rises more steeply with temperature

increase than that of B by the definition of heat capacity

CP ¼ qH
qT

� �
P

ð5-48Þ

Consequently, for any exothermic reaction, �rH
298 increases with temperature as

well (Fig. 5-7).

Figure 5-6 Pluto drawing of cis-2-Butene PCMODEL v8.0. The double bond is not

rendered.

Temperature

E
nt

ha
lp

y

T1

∆H

∆H

T2

Figure 5-7 Enthalpy as a Function

of Temperature for the Exothermic

Reaction A ! B.
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More complicated reactions and heat capacity functions of the form CP ¼
aþ bT þ cT2 þ � � � are treated in thermodynamics textbooks (e.g., Klotz and

Rosenberg, 2000). Unfortunately, experimental values of heat capacities are not

usually available over a wide temperature range and they present some computa-

tional problems as well [see Eq. (5-46)].

Population Energy Increments

There are two additive terms to the energy, POP and TORS, that have not been

mentioned yet because they are zero in minimal ethylene. The POP term comes

from higher-energy conformers. If the energy at the global minimum is not too far

removed from one or more higher conformational minima, molecules will be

distributed over the conformers according to the Boltzmann distribution

Ni

N0

¼ e�½ Ei�E0ð Þ=kBT � ð5-49Þ

where Ni

N0
is the ratio of molecules in the ith high-energy conformational state to

molecules in the ground state (see Computer Project 4-2). Ei � E0 is the energy

difference between the energetic conformer and the ground state. If there is

degeneracy of any energy level, it is counted into the conformational mix. If there

are several conformers not too far from the ground state, they will be simulta-

neously populated and all must be taken into account. The energy of the compound

under investigation, as measured by experimental means, is that of the weighted

average determined by the conformational mix at any selected temperature.

Exercise 5-2

A molecule has three nondegenerate conformers (Fig. 5-8). One is 450� 10�23 J above

the ground state, and the second high-energy conformer is 900� 10�23 J above the

ground state. What are the percentages of each of the three conformers relative to the total

number of molecules in a sample of the normal conformational mixture at 300 K?

Solution 5-2

The exponent in the Boltzmann expression for the conformer at E1 is

� E1 � E0ð Þ
kBT

¼ � 450� 10�23

1:381� 10�23ð300Þ ¼ �1:086

E0

E1

E2

Figure 5-8
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where kB is Boltzmann’s constant. The exponent in the Boltzmann expression for the

highest conformer is just twice this value

� E2 � E0ð Þ
kBT

¼ � 900� 10�23

1:381� 10�23ð300Þ ¼ �2:172

The ratio of conformers is

N1

N0

¼ e�ð E1�E0ð Þ=kBTÞ ¼ e�1:086 ¼ 0:3376

between the middle conformer and the ground state and it is

N2

N0

¼ e�ð E2�E0ð Þ=kBTÞ ¼ e�2:172 ¼ 0:1139

between the highest energy conformer and the ground state.

The total number of molecules is

N ¼ N0 þ 0:3376N0 þ 0:1139N0 ¼ 1:452N0

so

N0 ¼ N

1:452
¼ 0:6889 ¼ 68:9 % of the total

N1 ¼ 0:3376N0 ¼ 23:3 %

N2 ¼ 0:1139N0 ¼ 7:6 %

Equal spacing between energy levels is not unusual. In the case of the harmonic oscillator,

it is the rule.

Exercise 5-3

Suppose that the computed ground-state enthalpy of formation of a molecule is�f H
298 ¼

�130:0 kJmol�1 but that it has two higher-energy conformers as described in Exercise

5-2. What is the expected experimental �f H
298 of the equilibrium conformational

mixture?

Solution 5-3

The energies of the two higher-energy conformers described in Exercise 5-2 are

450� 10�23Jð6:022� 1023mol�1Þ ¼ 2:71 kJmol�1

and

900� 10�23Jð6:022� 1023mol�1Þ ¼ 5:42 kJmol�1
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higher than the ground state, where the conversion factor is Avogadro’s number. Knowing

the % composition of the conformational mixture, we have

0:2325ð2:71 kJmol�1Þ ¼ 0:63 kJmol�1

and

0:0784ð5:42 kJmol�1Þ ¼ 0:43 kJmol�1

as the molar contributions from the higher-energy conformers to the conformational

mixture. The total contribution is 1:06 kJmol�1, so we expect an experimental measure-

ment of �f H
298 to yield �130:0þ 1:06 ¼ �128:9 kJmol�1.

The discrepancy between calculation and experiment in Exercise 5-3 is within

the uncertainty limits of many thermochemical measurements and would probably

not be noticed in a single experiment. A systematic error of this magnitude would

certainly be detected by a careful examination of many experimental results such as

those carried out by Allinger (1989).

The term ‘‘higher-energy conformer’’ has been used in Exercise 5-3 to denote a

conformer that has a slightly higher energy than the ground state, say 10 kJmol�1 or

less, as distinct from conformers that are much higher in energy than the ground

state, say many tens or hundreds of kilojoules per mole. Truly high-energy

conformers need not be considered when calculating the energy or enthalpy of a

conformational mix because, even though each one contributes much to the

mixture, there are so few of them (by Boltzmann’s distribution) that the total

contribution is nil. Notice that in Solution 5-3, the conformer at E2 makes a smaller

total contribution to �f H
298 than the conformer at E1 even though it has a higher

energy because there are fewer molecules at E2 than at E1.

Torsional Modes of Motion

Many flexible molecules have a low-frequency torsional (twisting) mode of motion.

The resulting energy levels are closely spaced, not far removed from the ground

state, and are appreciably populated at room temperature. There is a torsional

contribution to the energy of flexible molecules owing to the cumulative contribu-

tion of the several upper torsional states, even though the contribution from each

state is small. In rigid molecules, this low-frequency contribution is zero.

Rather than calculate the enthalpy contribution of the torsional states individu-

ally, an empirical sum that is an integral multiple of 0:42 kcal mol�1 per torsional

degree of freedom is assigned to flexible molecules in MM3. Torsional motion of a

methyl group is not added to a calculated �f H
298 because it is included in the

methyl parameterization.

In propane, there are two low-frequency torsional motions at the C��C bonds

H3C CH2 CH3
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but both have been accounted for in the empirical bond energy scheme by the

methyl group increments; therefore, no TORS correction is added to the BE sum to

obtain �f H
298.

In n-butane,

H3C CH2 CH2 CH3

the central C��C bond contributes a torsional energy that is not carried into �f H
298

by a contiguous methyl group. Hence, in n-butane, 1 unit of torsional energy for the

2-3 bond is added to the �f H
298 sum. In n-pentane, 2 units are added, one for each

internal C��C bond. In isobutane, there is no internal C��C bond contribution,

isopentane has 1, and so on. Ethane is an exceptional case. There is one torsional

motion at the C��C bond, but there are two methyl groups so the molecule has been

overcorrected. One torsional energy parameter must be subtracted to obtain the

correct �f H
298.

The value of the torsional energy increment has been variously estimated, but

TORS ¼ 0:42 kcalmol�1 was settled on for the bond contribution method in MM3.

In the full statistical method (see below), low-frequency torsional motion should be

calculated along with all the others so the empirical TORS increment should be

zero. In fact, TORS is not zero (Allinger, 1996). It appears that the TORS increment

is a repository for an energy error or errors in the method that are as yet unknown.

COMPUTER PROJECT 5-2 j The Heat of Hydrogenation of Ethylene

In this experiment, we shall run two MM3 files, one for ethylene and one for ethane.

Each run gives a value for the ground-state enthalpy of formation without torsional

corrections of the target compound. After correcting ethane for the torsional

increment of two methyl groups and only one torsional motion, calculate the

‘‘heat’’ (strictly, enthalpy) of hydrogenation �hH
298 for the reaction

CH2 ¼ CH2 þ H2 ! CH3��CH3

Procedure. 1) MM3. Atom types for carbon are 1 and 2 for sp3 and sp2,

respectively, and hydrogen is type 5 as previously seen. Be sure the switch is on in

column 65 or you will not get an enthalpy of formation. If you develop your ethane

input file from the output file of ethylene (which is probably the best way to do it if

you are running without a GUI) remember that you can use a nonzero z-coordinate

to take into account the nonplanar nature of the ethane molecule. One should be

aware of the three-dimensional nature of molecules in drawing an input geometry

because, starting from a planar input file, it is possible for atoms that should move

out of the input plane to become frozen in it, leading to the wrong geometry and

energy (see false minima below). An example is tetrahedral methane, which can

become frozen in a false planar configuration.

H C

H

H

H
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Activate MM3 with the command mm3. Answer questions: file? ethene.mm3,

parameter file? Enter (default) line number 1, option 2. The default parameter set is

the MM3 parameter set; don’t change it. The line number starts the system reading

on the first line of your input file, and option 2 is the block diagonal followed by full

matrix minimization mentioned at the end of the section on the Hessian matrix. You

will see intermediate atomic coordinates as the system minimizes the geometry,

followed by a final steric energy. End with 0, output Enter, coordinates Enter.

Your output is stored as TAPE4.MM3, and your final geometry is TAPE9.MM3.

Read TAPE4.MM3 (cat TAPE4.MM3 in UNIX). If you are using a UNIX or

LINUX system, this is case sensitive, that is, tape4.mm3 won’t work because it is

lower case. Once you get into Program MM3, procedures are identical from one

system to another but file handling and editing are another matter. They are usually

system specific, and you may need the help of your local system guru to establish a

routine for your computer.

2) PCMODEL. Draw the carbon skeleton (a single horizontal line for ethylene)

and add a bond using Add_B. Add hydrogens H/AD select Force field MM3 and

Compute!minimize. Record Hf, which is �f H
298 uncorrected for torsional

energy for the molecule. Use the Edit!erase option to clear the screen and

repeat the entire procedure for ethane omitting only the Add_B step because we

want a single bond between the carbon atoms.

3) Output. Upon successful execution, you will obtain an output file from which

you can follow the geometry change during iterative minimization. As the atoms

approach their respective potential energy minima, they are moved less and less

until the criterion of minimum geometry change is met (see also PART 2, File 4-3).

It is wise to keep an archive of all input and output files using Save. At the end of

the output, various energies are calculated along with the ‘‘heat’’ of formation that

we seek in order to obtain �hydH
298. In calculating �hydH

298, remember that the

enthalpy of formation of an element in the standard state is zero.

Pi Electron Calculations

It has long been known that the enthalpy of hydrogenation of benzene

ð49:8 kcalmol�1; Conant and Kistiakowsky, 1937) is not the same as three times

the enthalpy of hydrogenation of cyclohexene ð3� 28:6 kcalmol�1Þ. Evidently, the
double bonds that we write in the Kekule structure of benzene

are very different from the double bond in cyclohexene. We ascribe a resonance

stabilization to benzene and similar molecules (toluene, naphthalene, etc.) to

account for the difference. Molecules possessing a benzenoid resonance stabilization
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energy are said to be aromatic. Stabilization is observed to a much lesser degree in

a molecule like 1,3-butadiene when its enthalpy of hydrogenation is compared with

two times the enthalpy of hydrogenation of 1-butene. Double bonds occupying

alternant positions in a molecular structure are called conjugated double bonds. In

the case of conjugated double bonds, we call the energy discrepancy a conjugation

energy. Both resonance energy and conjugation energy are quantum mechanical in

origin. Neither is treated by pure molecular mechanical calculations because MM is

a classical mechanical theory as distinct from a quantum mechanical theory.

Each C����C bond in a conjugated or aromatic system has two electrons,

designated p electrons, which are largely responsible for its quantum mechanical

features. One approach to the mechanics of a system of alternant double bonds is to

carry out a relatively simple quantum mechanical treatment of the p system called a

valence electron self consistent field (VESCF) calculation. Self-consistent field

calculations bring about a change in carbon-carbon bond orders that are no longer

simply single or double. Force constants depend on bond order; hence, they are

changed by the VESCF calculation. The VESCF calculation is followed by a MM

minimization, which causes the atom coordinates to change, necessitating a new

VESCF optimization, which necessitates a new MM calculation, and so on. This

alternation between classical and quantum mechanical calculations is cut off at

some point when repeated calculations do not produce a significant change in the

energy. The procedure is not as difficult as it sounds, and with a fast workstation or

microcomputer conjugated and aromatic systems can be treated rather easily.

Exercise 5-4

Using graph paper, construct a simple hexagon of carbon atoms and place hydrogen atoms

outside the hexagon about 1 Å from the carbon atoms. The x, y, z-coordinates of all 12

atoms plus atom type designators constitute a minimal MM3 starting geometry for

benzene.

Solution 5-4

One of many possible solutions is

�0.8 1. 0. 2

0.8 1. 0. 2

1.7 0. 0. 2

.8 �1. 0. 2

�0.8 �1. 0. 2

�1.7 �0. 0. 2

�1.5 2. 0. 5

1.5 2. 0. 5

3. 0. 0. 5

1.5 �2. 0. 5

�1.5 �2. 0. 5

�3. �0. 0. 5
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Exercise 5-5

Add the necessary control lines to obtain the full MM3 minimal input file and run the file

under the MM3 force field to obtain the enthalpy of formation of the aromatic molecule

benzene.

Solution 5-5

minbenz 1 12

TTTTTT

1 6 1

1 2 3 4 5 6 1

1 7 2 8 3 9 4 10 5 11 6 12

Placing the 5-line control block above the geometry specification block of Exercise 5-4

gives the complete minimal input file for benzene, which we can call minbenz.mm3 (or

anything else you like with the extension .mm3). Aside from the geometry block, there

are two important differences between minbenz.mm3 and the file minimal.mm3 for

ethylene in File 4-1a. One is the switch in column 61 of the first line, the other is the set of

switches TTTTTT that constitutes the entire second line. The first switch tells the system

that there are alternant sp2 carbon atoms in the system, and the series of T designators

responds to the logical statement ‘‘atoms 1 through 6 are alternant sp2 carbon atoms.’’ The

input line says that this statement is ‘‘True for each of the first 6 carbon atoms.’’

Remember that in digital logic, T for True is 1 and False is 0, so we are justified in calling

these letters logical switches. Other differences between minbenz.mm3 and mini-

mal.mm3 are the absence of a 4 in column 67 of line 1, which changes the amount of

output, and the enthalpy of formation switch in column 65 of line 3 in theminbenz.mm3.

The computed enthalpy of formation of benzene found by execution of this file in

Program MM3 is 20:36 kcalmol�1.

COMPUTER PROJECT 5-3 j The Resonance Energy of Benzene

Compute the resonance energy of benzene.

Procedure. We already have the computed �f H
298 of benzene from the previous

paragraph. After adding four hydrogen atoms in the appropriate places of the sketch

you have made for benzene and modifying the minimal input file for the new

molecule, compute the �f H
298 of cyclohexene. Don’t forget to change the control

block of your input file by changing the added atoms list, the total atoms entry, and

so on. Repeat the procedure with cyclohexane.

Alternatively, any or all three files for benzene, cyclohexene, and cyclohexane

can be generated using the draw option of PCMODEL. Either way, the cyclohex-

ene file is

Cyclohexene 0 16 3 0 0

0 1 0.00000 10 0 0 0 0 0 0 1

1 2 3 4 5 6 1 0 0 0 0 0 0 0

1 7 2 8 3 9 3 10 4 11 4 12 5 13 6 14

6 15 6 16
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�0.05627 1.36350 0.99040 2

�1.21221 0.74441 0.70886 2

�1.29552 �0.51251 etc. 1

0.00069 etc. 1

etc. 1

etc.

File 5-2. An Input File For Cyclohexene.

If one remembers that zeros and blanks are the same, this is essentially a minimal

file for cyclohexene. Once having obtained �f H
298ðbenzeneÞ ¼ 20:36 kcal mol�1,

�f H
298 (cyclohexene), and �f H

298 (cyclohexane), you have enough information to

obtain �hydH
298 (benzene), �hydH

298 (cyclohexene), and the resonance energy of

benzene. Construct an enthalpy-level diagram showing how the resonance energy

of benzene is obtained from the enthalpies of hydrogenation you have calculated.

Strain Energy

A useful computed property of some molecules is the strain energy, included in the

MM3 output, which is the difference between the energy (enthalpy) of a target

molecule and the energy of the same molecule calculated with a parameter set

derived from reference molecules that are supposed to be strain free. (The rigorous

thermodynamic distinction between energy and enthalpy drops out in the compar-

ison.) Note that the steric energy is not the strain energy because most normal

molecules have a nonzero steric energy but not all molecules have strain.

Cyclohexane has a steric energy of 7:72 kcal mol�1 but a strain energy (SE) of

only 1:4 kcal mol�1 in the MM3 force field. Relative values of strain energies are

useful in qualitative chemical thinking, but absolute values are questionable

because of the arbitrary selection of a set of strain-free reference molecules.

False Minima

In trying alternate ways of building up input files, one is bound to discover paths

that lead to different enthalpies of formation for the same molecule. In general, MM

minimizations seek the extremum closest to the starting geometry. Not all extrema

are minima, nor is any one minimum necessarily the global minimum. Molecular

geometries may come to rest at a local minimum, which is a conformer of the

minimum geometry or (rarely) a saddle point on the potential energy surface. A

conformer is distinguished from an isomer by the fact that one can go from one

conformer to another without breaking chemical bonds, for example, by rotation of

the 2-3 bond in butane whereas a change from one isomer to another requires breaking

chemical bonds, for example, the isomerization from cis- to trans-2-butene.

False minima may entrap the unwary; a structure may be mistaken for the

ground state that does not represent the most stable conformer. If so, the calculated
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enthalpy of formation will be higher than the thermodynamic enthalpy of forma-

tion. The error may be small, as in the case of a gauche conformer of butane

mistaken for the ground-state anti conformer, or it may be tens or hundreds of

kilocalories per mole resulting from a geometry that is a far cry from the desired

equilibrium geometry.

There is no known computational method for finding the absolute molecular

energy minimum. In the case of small molecules, one can determine the enthalpy of

formation for all of the limited number of minima that can exist simply by starting

from many different geometries and convincing oneself that all reasonable alter-

natives have been tried. Depending on molecular rigidity and symmetry, the number

of conformational choices may increase rapidly for larger molecules.

The opposite approach to judicious choice uses a program that perturbs the

starting geometry in a random way and then allows it to relax (Saunders, 1987).

After many random ‘‘kicks’’ of this kind, the output files are examined for the

lowest energy. Entry into Program MM3 is just as it was for the single minimiza-

tions leading to�f H
298. Activating the random or stochastic search routine in MM3

is by choosing option 8 or 9 from the routine menu presented at the start of the

MM3 run. The system needs to know how many random kicks are requested as well

as the kick size. This information is provided by adding a line at the bottom of the

input file with an integer right justified in a field of 5 followed by a floating point

number anywhere in the next field of 10 columns. Using 0 as a place marker for the

integer input, the line 00005 2.0 as the very last line of a file like File 5-2 would

specify five kicks of size 2.0 Å.

One sees much more output as the computer ‘‘kicks’’ or ‘‘pushes’’ the molecular

geometry, carries out a new minimization, and stores the energy on each kick. You

are free to specify a different number of kicks or a different kick size. The kick size

of 2.0 Å has been found by experience to be a pretty good compromise between

kicking the molecule so hard that it ends up in a bizarre geometry and not kicking it

hard enough to go over conformational energy barriers.

The stored output of a stochastic search, STOCHASTIC.MEM, for the various

local minima of n-pentane using Program MM3 is accessed by the following four

lines

select

MM3 COORDINATE FILE (INPUT FILE)? NPENTA.MM3

LINE NUMBER¼1

SEARCH OUT PUT FILE [STOCHASTIC.MEM]? STOCHASTIC.MEM

in which lines 2, 3, and 4 are responses to program prompts (be careful of case in

line 2; it may be npenta.mm3). The computer responds with File 5-3.

npenta

4 CONFORMATIONS FOUND

ITERATION # OF TIMES NEGATIVE

FIRST FOUND ENERGY FOUND FREQUENCY

1 1 4.1418 8 0
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2 2 4.9948 21 0

3 3 5.7613 13 0

4 4 7.4594 8 0

File 5-3 Output From a Stochastic Search of the n-Pentane Molecule in MM3.

The input structure was subjected to 50 ‘‘kicks.’’

The search reported in File 5-3 there found four energetically distinguishable

conformers. Steric energies 2, 3, and 4 are of racemic pairs. They are degenerate.

Strictly speaking, energy 4 corresponds to a pair of structural conformers that

are somewhat twisted relative to one another; hence, though they are degenerate,

they are not exactly a racemic pair (Mencarelli, 1995).

The energy differences among conformers relative to the ground state are 0.0,

0.85, 1.62, and 3:32 kcalmol�1. The relative populations of the states, judged by the

number of times they were found in a random search or 50 trials, are 0.16, 0.21,

0.15, and 0.08 when degeneracy is taken into account. In the limit of very many

runs, a Boltzmann distribution would lead us to expect a ground state that is much

more populous than the output indicates, but this sample is much too small for a

statistical law to be valid.

The last column in File 5-3 shows that no imaginary frequencies are found in this

example. In general, imaginary frequencies are found when optimization settles on

a saddle point for a transition from one conformer to another. Because the force

constant on a saddle point is negative, it has an imaginary root, leading to an

imaginary frequency. Searching the potential energy surface of propene sometimes

reveals a saddle point with the double bond eclipsed by one hydrogen of the methyl

group as it rotates from one staggered conformation to another.

Dihedral Driver

A dihedral or ‘‘twist’’ angle A-B-C-D that A makes with D can be driven around

the B-C axis in arbitrarily chosen angular increments. At each step during the drive,

an energy is recorded so that the locus of energies as a function of drive angle gives

a profile of the potential energy hill a molecule goes over on being driven away

from a minimum. For example, a switch 1 in column 80 of line 2 of an input deck

with a line like

10001000020000300004000000180:000:0010:0

as the last line of an input deck, rotates 1 the dihedral angle connecting atoms 1

through 4, 0001000020000300004, (skip 5 spaces, 00000), from the anti angle

0180. to the eclipsed angle 000.0 in increments of 010.0 degrees. (If you know

some FORTRAN this incantation will make sense to you.) The zeroes are not

necessary parts of the input file; they serve as place keepers. If a zero is omitted,

however, a blank must take its place because this file is in strict MM3 format.
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Exercise 5-6

Using Program MM3, the MM3 force field, SigmaPlot, and the comments in this section

on dihedral driver, plot the steric energy of n-butane as a function of the dihedral angle

from the anti conformation to the eclipsed conformation. Do not use a full matrix option

as your optimization method; use the block diagonal option 1. Out of curiosity, you might

want to try the other options to see what happens, just don’t regard the results as your

solution. The answer to any ‘‘What would happen if I...’’ question is, ‘‘Try it.’’

Solution 5-6

Your plot should resemble Fig. 5-9. Note that the angles of the dihedral driver rotate

through negative values but it doesn’t make any difference because the plot comes out

the same, except for the change of o ¼ ð�180þ dihedral angleÞ. The steric energies are
most conveniently read from the geo file, which is TAPE9.MM3. PCMODEL contains a

convenient dihedral driver and graphing combination (see PCMODEL user’s manual).

One precaution is that, especially with congested molecules, these potential energy

loci should not be taken too literally because rotated atoms or groups (within the model)

can ‘‘stick’’ during rotation, then suddenly ‘‘snap into place’’, giving a potential energy

discontinuity that has no counterpart in the real molecule.

Full Statistical Method

Very early force fields were used in an attempt to calculate structures, enthalpies of

formation, and vibrational spectra, but it was soon found that accuracy suffered

severely in either the structure-energy calculations or the vibrational spectra. Force

constants were, on the whole, not transferable from one field to another. The result

was that early force fields evolved so as to calculate either structure and energy or

spectra, but not both.
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Figure 5-9 Steric Energy as

Determined using the Dihedral

Driver Option of MM3. Com-

pare with Figure 4-12.
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To determine geometry, energy, and vibrational spectral frequencies, one must

be able to determine the location, depth, and shape of the potential well

corresponding to each bond in the model. Off-diagonal elements correspond to

interactions like stretch-bend interactions that are reflected in the shape of the well.

Early structure-energy force fields contained few off-diagonal elements, largely

because of machine limitations. Machine limitations have become less severe

during the later evolution of MM methods so that contemporary force fields can be

used to calculate geometry and �f H and also give good results for vibrational

spectral lines. MM3 is one example of a newer, more versatile MM force field. The

partial MM3 output file in Fig. 5-10 shows good agreement between calculated and

experimental values.

Entropy and Heat Capacity

A force field that can produce vibrational spectra has a second advantage in that the

�f H calculations can be put on a much more satisfactory theoretical base by

calculating an enthalpy of formation at 0 K as in ab initio procedures and then

adding various thermal energies by more rigorous means than simply lumping them

in with empirical bond enthalpy contributions to �f H
298. The stronger the

theoretical base, the less likely is an unwelcome surprise in the output.

Calculations by the more rigorous procedure yield, in MM3, a sum of (a) bond

energies, (b) steric energy, (c) vibrational zero point and thermal energies, and

(d) structural features POP and TORS. Energies (a), (b), and (d) are calculated as

before. Bond energy parameters appear to be quite different from those of the

default MM3 calculations carried out so far because zero point and thermal energies

are not included in the parameters but are added later.

Energies (c) are calculated from the harmonic oscillator model (Polyatomic

Molecules, Chapter 4). The quantized harmonic oscillator has a ladder of

equidistant energy levels within a parabolic potential energy well. With a force

field that provides good vibrational spectra, we can calculate a molecular energy

at 0 K by summing bond energies from the constituent atoms and add energies (b)

and (d) and then add (c), a half-quantum of energy called the zero point energy,

and a vibrational contribution to the thermal energy that is calculated from

rigorous statistical mechanical principles. The zero point and vibrational energy

no Frequency Symmetry A(i)

1. 3721.5 (B2  ) vs
2. 3666.3 (A1  ) vs
3. 1593.7 (A1  ) vs

Figure 5-10 Partial MM3 Output as Related to the Vibrational Spectrum of H2O. The

experimental values of the two stretching and one bending frequencies of water are 3756,

3657, and 1595 cm�1. The IR intensities are all very strong (vs).
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contributions are known as accurately as the vibrational spacings are known, that is,

rather well if enough accurate off-diagonal elements are involved in the Hessian

matrix (Fig. 5-11).

Fig. 5-11 shows that, for water, entropy and heat capacity are summations in

which two terms dominate, the translational energy of motion of molecules treated

as ideal gas particles, and rotational, energy of spin about axes having nonzero

moments of inertia terms (see Problems).

Free Energy and Equilibrium

Having calculated the standard values � f H

 and S
 for the participants in a

chemical reaction, the obvious next step is to calculate the standard Gibbs free

energy change of reaction �rG

 and the equilibrium constant from

�rH

 ¼

X
�f H



prod �

X
�f H



react ð5-50Þ

�rS

 ¼

X
S
prod �

X
S
react ð5-51Þ

�rG

 ¼ �rH


 � T�rS

 ð5-52Þ

and

�rG

 ¼ �RT lnKeq ð5-53Þ

or, writing Eq. (5-53) in an equivalent form

Keq ¼ e��rG

=RT ð5-54Þ

Equation (5-54) makes clear a difficulty that will bedevil us throughout computa-

tional chemistry: Although the accuracy of computational chemistry is extremely

high, the demands placed on our results may be even higher. In the present case, the

equilibrium constant is dependent on the exponential of the standard free energy

ENERGY ENTHALPY ENTROPY FREE ENERGY HEAT CAPACITY
(Kcal/mol) (Kcal/mol) (eu) (Kcal/mol) (cal/mol/deg)

Translational .889 1.481 34.593 –8.833 4.967
Rotational .889 .889 10.375 –2.205 2.980
Vibrational 12.842% 12.842% .008* 12.839% .054*
Potential .000# .000# .000 .000# .000
Mixing .000 .000 .000 .000 .000
Total 14.619 15.211 44.976 1.801 8.002

Figure 5-11 Partial MM3 Output Showing Entropy and Heat Capacities for Water.

Experimental values are 45.13 cal K�1 mol�1 for the absolute entropy and 8.03 cal K�1 mol�1

for the heat capacity.

MOLECULAR MECHANICS II: APPLICATIONS 163



change; hence, a small error in any of the computations going into�rG

 is reflected

in a large error in Keq. This inescapable exponential relationship must be borne in

mind when evaluating calculated equilibrium constants and many other computed

results in a practical or industrial context. However, lest we complain that nature

has been unfair in placing such exacting demands on us for the accuracy of our

calculations, let us be grateful that she permits us to do them at all.

Exercise 5-7: Calculation of Keq at 298 K

Because of the severe demands placed on us for accuracy if we are to calculate an

equilibrium constant, let us choose a simple reaction, the isomerization of but-2-ene.

cis-but-2-ene ! trans-but-2-ene

Using MM3, calculate �fH

 and S
 leading to �rG


 and Keq. This reaction has been the

subject of computational studies (Kar, Lenz, and Vaughan, 1994) and experimental

studies by Akimoto et al. (Akimoto, Sprung, and Pitts, 1972) and by Kapeijn et al.

(Kapeijn, van der Steen, and Mol, 1983). Quantum mechanical systems, including the

quantum harmonic oscillator, will be treated in more detail in later chapters.

Solution 5-7

We found Keq ¼ 5:33 (mm3 cbu2.mm3, option 4, TEMP, VIB, VIB, Enter (default);

read the output file using more TAPE4.MM3, hit spacebar to advance page by page to

STATISTICAL THERMODYNAMICS). Kar, Lenz, and Vaughan calculated Keq ¼ 4:03.
Kapeijn, van der Steen, and Mol found Keq ¼ 3:12, and an experimental study by

Akimoto, Sprung, and Pitts produced Keq ¼ 2:98 at 298 K.

COMPUTER PROJECT 5-4
�� More Complicated Systems

Minimal input files for cyclopentene and cyclopentane can be constructed from a

pentagon drawn on graph paper the way minimal ethylene was drawn (Fig. 4-4). For

more complicated molecules, however, the draw function of PCMODEL or some

similar file constructing program becomes less a convenience and more a necessity.

a) Cyclopentene. Calculate the enthalpy of hydrogenation of cyclopentene to

cyclopentane and compare the result with �hydH
298 (ethylene) found in

Computer Project 5-2. The result for hydrogenation of cyclopentene differs

from that for ethene by an amount that is well outside the expected error for MM

calculations. Suggest a reason for this.

b) Dimethylcyclopentene. The hydrogenation product of dimethylcyclopentene

CH3

CH3
+ +

cis trans

H2
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can exist in two forms, called cis or trans, according to whether the reaction product

has both methyl groups on the same side of the plane of the cyclopentane ring or on

opposite sides of the ring. (Most of the hydrogen atoms have been left out of the

equation for simplicity.) The object of this part of the project is to compute the

�hydH
298of the reactions leading to the cis and trans isomers and to compare them

with the experimental value to see which of the isomers is actually formed.

Procedure. PCMODEL has a tool called Rings. Use this tool to establish a base

molecule, either cyclopentene or cyclopentane. The Build tool converts a hydrogen

atom into a methyl group, enabling you to build more complex molecules from

simpler ones. Use Build to convert your base molecules to 1,2-dimethylcyclo-

pentene, cis-dimethylcyclopentane, and trans-dimethylcyclopentane. Determine

�f H
298 for all three molecules, and from these values determine which of the

two reaction paths

CH3

CH3
+ H2

cis

or

CH3

CH3
+ H2

trans

is followed. [In the actual experiment (Allinger et al., 1982), both are formed but

one predominates.] The experimental value is �hydH
298 (1,2-dimethylcyclopen-

tene) ¼ �22:5� 0:2 kcalmol�1. This result is unusual, not only because it is a

thermochemical analysis of parallel hydrogenation reactions, but because the

enthalpy of hydrogenation is one of the smallest ever measured for a hydrocarbon.

The reactant molecule is stabilized by methyl groups in the 1 and 2 positions, and

the product, particularly the cis isomer, is destabilized by crowding. Both of these

factors make hydrogenation less exothermic.

Among the unusual features of this reaction is that it is a surface-catalyzed

reaction (Pd or Pt) but it gives a mixture of isomeric products. Suggest a mechanism

by which this might occur.

c) Bicyclo[3.3.0]octane. If two cyclopentane molecules are fused at one bond

+ H2
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the product is bicyclo[3.3.0]octane. Bicyclo[3.3.0]octane can exist as cis and trans

isomers according to whether the two hydrogen atoms at the ring fusion are on the

same side of the molecular plane or on opposite sides of it. Moreover, in the cis

isomer, the pentagons themselves are bent slightly out of the plane of the molecule

such that, viewed edgewise, three conformers are possible

The object of this part of the project is to determine the energy (enthalpy) levels in

each the three conformers and so to determine the composition of the equilibrium

conformational mixture. That having been done for the cis isomer, the procedure is

repeated for the trans isomer.

Procedure. Carry out a stochastic search on the cis isomer of bicyclo[3.3.0]octane

to determine the relative energies of these three conformers. You need only the

steric energies obtainable from STOCHASTIC.MEM for these relative energies

because the summation of the bond energies is the same for all three conformers.

Giving the lowest conformer an arbitrary zero energy, calculate the relative

populations of the three states. You will need to match each energy with its

structure.

Carry out the same stochastic search over the conformational space of the trans

isomer. The result of this search may surprise you at first, but there is a simple

explanation, which you should include in your report.

PROBLEMS

1. A 10.0-g mass connected by a spring to a stationary point executes exactly

4 complete cycles of harmonic oscillation in 1.00 s. What are the period of

oscillation, the frequency, and the angular frequency? What is the force

constant of the spring?

2. The electric field of electromagnetic radiation completes 4:00� 1013 complete

cycles in 1.00 s. What are the period and frequency of the oscillation, and what

is its wavelength? What is the frequency in units of cm�1?

3. The hydrogen atom attached to an alkane molecule vibrates along the bond axis

at a frequency of about 3000 cm�1. What wavelength of electromagnetic

radiation is resonant with this vibration? What is the frequency in hertz? What

is the force constant of the C��H bond if the alkane is taken to be a stationary

mass because of its size and the H atom is assumed to execute simple harmonic

motion?

4. Three 10.0-g masses are connected by springs to fixed points as harmonic

oscillators shown in Fig. 5-12. The Hooke’s law force constants of the springs

are 2k, k, and k as shown, where k ¼ 2:00Nm�1. What are the periods and

frequencies of oscillation in hertz and radians per second in each of the three

cases a, b, and c?
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5. Consider a harmonic oscillator connected to another harmonic oscillator

(Fig. 5-13). Write the sum of forces on each mass, m1 and m2. This is a

classic problem in mechanics, closely related to the double pendulum (one

pendulum suspended from another pendulum).

6. Set up the classical equations of motion for the system in Fig. 5-13.

7. Write the equations of motion in matrix form. Take m1 and m2 to be unit

masses (say 1.000 kg each).

8. For simplicity, take the specific case where k1 ¼ k2 ¼ k. Write the matrix of

force constants analogous to matrix (5-29). Diagonalize this matrix. What are

the roots? Discuss the motion of the double pendulum in contrast to two

coupled, tethered masses (Fig. 5-1).

9. Write an expression for the kinetic energy T in a system of two masses

connected by three springs including a central coupling spring. Write an

expression for the potential energy V of this system. Write an expression for

the total energy E. Note the similarity between this expression and the

electronic Hamiltonian for helium, Eq. (8-17).

10. A spring stretches 0.200 m when it supports a mass of 0.250 kg.

(a) What is the force constant of the spring?

If the mass is pulled 0.0500 m below its equilibrium point and released:

(b) What is the frequency of harmonic oscillation of the mass? What is its

period of oscillation?

(c) What is the potential energy of the mass at the extremes of its excursion?

(d) What is the maximum speed of the mass?

2 k k   k k

k

a b c

Figure 5-12 Three Harmonic Oscillators.

k1 m1 k2 m2

x1 x2

Figure 5-13 A Double Harmonic Oscillator. Displacements x1 and x2, shown positive, may

also be negative or zero.
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11. Write and run an MM3 input file for methane ‘‘from scratch,’’ that is, open an

empty file and put in all the necessary information to do the MM3 calculation

on CH4. What is the enthalpy of formation of CH4? What are the C��H bond

lengths and angles?

12. Draw an enthalpy level diagram showing how Kistiakowsky was able to

determine the value of �isomH
298 for the cis ! trans isomerization from

enthalpies of hydrogenation.

13. What is the MM3 enthalpy of formation at 298.15 K of styrene? Use the option

Mark all pi atoms to take into account the conjugated double bonds in styrene.

Is the minimum-energy structure planar, or does the ethylene group move out

of the plane of the benzene ring?

14. Find the MM3 enthalpy of formation of 1- and 2-methyladamantane. Use

the Rings tool and the adamant option to obtain the base structure of

adamantane itself. Use the Build tool to add the methyl group. 1-Adamantane

is the more symmetrical structure of the two isomers.

15. What enthalpy difference would lead to a 25–75% mixture of syn and skew

rotamers of 1-butene? Neglect any entropy change.
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C H A P T E R

6
Huckel Molecular Orbital
Theory I: Eigenvalues

Most problems in chemistry [all, according to Dirac (1929)] could be solved if we

had a general method of obtaining exact solutions of the Schroedinger equation

ĤH� ¼ E�

The reason a single equation ĤH� ¼ E� can describe all real or hypothetical

mechanical systems is that the Hamiltonian operator ĤH takes a different form for

each new system. There is a limitation that accompanies the generality of the

Hamiltonian and the Schroedinger equation: We cannot find the exact location of

any electron, even in simple systems like the hydrogen atom. We must be satisfied

with a probability distribution for the electron’s whereabouts, governed by a

function � called the wave function.

We cannot solve the Schroedinger equation in closed form for most systems. We

have exact solutions for the energy E and the wave function � for only a few of

the simplest systems. In the general case, we must accept approximate solutions.

The picture is not bleak, however, because approximate solutions are getting

systematically better under the impact of contemporary advances in computer

hardware and software. We may anticipate an exciting future in this fast-paced field.

Computational Chemistry Using the PC, Third Edition, by Donald W. Rogers

ISBN 0-471-42800-0 Copyright # 2003 John Wiley & Sons, Inc.
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Exact Solutions of the Schroedinger Equation

Among the few systems that can be solved exactly are the particle in a one-

dimensional ‘‘box,’’ the hydrogen atom, and the hydrogen molecule ion Hþ
2 .

Although of limited interest chemically, these systems are part of the foundation of

the quantum mechanics we wish to apply to atomic and molecular theory. They also

serve as benchmarks for the approximate methods we will use to treat larger

systems.

The Hamiltonian ĤH in the equation ĤH� ¼ E� is an operator, that is, it is an

instruction telling you what operation or operations to perform on some function, in

this case, the wave function. The Hamiltonian takes a different form for different

mechanical systems. One of the simplest forms of ĤH is

ĤH ¼ � �h2

2m

d2

dx2
þ V ð6-1Þ

for a single particle of mass m constrained to move on the x-axis under a potential

energy V. If V is zero for excursions of a particle between two limits in the x

direction designated 0 and a but is infinite elsewhere, this form leads to the

Schroedinger equation for what is called a particle in a one-dimensional box,

� �h2

2m

d2

dx2
� ¼ E� ð6-2Þ

The problem is treated in elementary physical chemistry books (e.g., Atkins, 1998)

and leads to a set of eigenvalues (energies) and eigenfunctions (wave functions) as

depicted in Fig. 6-1. It is solved by much the same methods as the harmonic

oscillator in Chapter 4, and the solutions are sine, cosine, and exponential solutions

just as those of the harmonic oscillator are. This gives the wave function in Fig. 6-1

its sinusoidal form.

x

E

0

2

4

6

8

10

12

0 a

Figure 6-1 Energy Levels E

and Wave Functions � for a

Particle in a One-Dimensional

Box.
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The eigenvalues are discrete values of E, in this case 1, 4, 9, . . . units plotted as

horizontal lines on the vertical axis in Fig. 6-1. The unit of energy in Fig. 6-1 is

h2=8ma2, where h is Planck’s constant and a is the length of the permitted excursion

of the particle along the x-axis. The eigenfunctions appear as sine waves having

zero, one, or two internal nodes for the three eigenfunctions shown in Fig. 6-1. A

node is a point where the function crosses the horizontal (� ¼ 0). All eigenfunc-

tions for this system have two terminal nodes, one at either end. In general, the

higher the energy eigenvalue of a system, the greater the number of nodes in the

corresponding eigenfunction. There is an infinite number of possible energy values

(solutions) for this system, but this is not the case for many other systems.

Another general observation that comes from consideration of simple systems

like this one is that separation of discrete energy levels (quantization) appears when

the motion of the particle is restricted in some way, in this case by placing barriers

at x ¼ 0 and x ¼ a. A particle that is not constrained (free particle) is not quantized;

its energy can take on any value. These general observations will be useful in

understanding and interpreting more complicated systems.

All solutions of the Schroedinger equation lead to a set of integers called

quantum numbers. In the case of the particle in a box, the quantum numbers are

n ¼ 1; 2; 3; . . . . The allowed (quantized) energies are related to the quantum

numbers by the equation

E ¼ n2h2

8ma2
ð6-3Þ

The hydrogen atom is a three-dimensional problem in which the attractive force of

the nucleus has spherical symmetry. Therefore, it is advantageous to set up and

solve the problem in spherical polar coordinates r, y, and f. The resulting equation

can be broken up into three parts, one a function of r only, one a function of y only,

and one a function of f. These can be solved separately and exactly. Each equation

leads to a quantum number

RðrÞ ) n

�ðyÞ ) l ð6-4Þ
�ðfÞ ) m

These are three of the four quantum numbers familiar from general chemistry. The

spin quantum number s arises when relativity is included in the problem, introdu-

cing a fourth dimension.

The hydrogen molecule ion is best set up in confocal elliptical coordinates with

the two protons at the foci of the ellipse and one electron moving in their combined

potential field. Solution follows in much the same way as it did for the hydrogen

atom but with considerably more algebraic detail (Pauling and Wilson, 1935;

Grivet, 2002). The solution is exact for this system (Hanna, 1981).
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In the few two- and three-dimensional cases that permit exact solution of the

Schroedinger equation, the complete equation is separated into one equation in each

dimension and the energy of the system is obtained by solving the separated

equations and summing the eigenvalues. The wave function of the system is the

product of the wave functions obtained for the separated equations.

Approximate Solutions

The logical order in which to present molecular orbital calculations is ab initio,

with no approximations, through semiempirical calculations with a restricted

number of approximations, to Huckel molecular orbital calculations in which the

approximations are numerous and severe. Mathematically, however, the best order

of presentation is just the reverse, with the progression from simple to difficult

methods being from Huckel methods to ab initio calculations. We shall take this

order in the following pages so that the mathematical steps can be presented in a

graded way.

The simplest molecular orbital method to use, and the one involving the most

drastic approximations and assumptions, is the Huckel method. One strength of the

Huckel method is that it provides a semiquantitative theoretical treatment of

ground-state energies, bond orders, electron densities, and free valences that

appeals to the pictorial sense of molecular structure and reactive affinity that

most chemists use in their everyday work. Although one rarely sees Huckel

calculations in the research literature anymore, they introduce the reader to many

of the concepts and much of the nomenclature used in more rigorous molecular

orbital calculations.

We have said that the Schroedinger equation for molecules cannot be solved

exactly. This is because the exact equation is usually not separable into uncoupled

equations involving only one space variable. One strategy for circumventing the

problem is to make assumptions that permit us to write approximate forms of the

Schroedinger equation for molecules that are separable. There is then a choice as to

how to solve the separated equations. The Huckel method is one possibility. The

self-consistent field method (Chapter 8) is another.

Three major approximations are made to separate the Schroedinger equation into

a set of smaller equations before carrying out Huckel calculations.

1. The Born--Oppenheimer Approximation

We assume that the nuclei are so slow moving relative to electrons that we may

regard them as fixed masses. This amounts to separation of the Schroedinger

equation into two parts, one for nuclei and one for electrons. We then drop the

nuclear kinetic energy operator, but we retain the internuclear repulsion terms,

which we know from the nuclear charges and the internuclear distances. We retain

all terms that involve electrons, including the potential energy terms due

to attractive forces between nuclei and electrons and those due to repulsive forces
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among electrons. In chemical calculations, we usually write the Schroedinger

equation in the same form as the original equation, ĤH� ¼ E�, with the under-

standing that it now relates to electronic motion only.

The Born–Oppenheimer approximation is not peculiar to the Huckel molecular

orbital method. It is used in virtually all molecular orbital calculations and most

atomic energy calculations. It is an excellent approximation in the sense that the

approximated energies are very close to the energies we get in test cases on simple

systems where the approximation is not made.

Atomic Units

There is a very convenient way of writing the Hamiltonian operator for atomic and

molecular systems. One simply writes a kinetic energy part � 1
2
r2 for each electron

and a Coulombic potential � Z=r for each interparticle electrostatic interaction. In

the Coulombic potential Z is the charge and r is the interparticle distance. The term

� Z=r is also an operator signifying ‘‘multiply by � Z=r’’. The sign is þ for

repulsion and � for attraction.

The symbol r2 is an operator that takes the form

d2

dx2

in Cartesian 1-space,

r2 ¼ q2

qx2
þ q2

qy2
þ q2

qz2

in Cartesian 3-space, or a more complicated form in other coordinate systems that

we might use, such as spherical polar or confocal ellipsoidal coordinates.

Writing � 1
2
r2 for the kinetic energy of each electron amounts to taking our unit

of mass as the mass of the electron instead of the kilogram (which is an arbitrary

unit anyway) and defining �h, the unit of angular momentum, as 1. The same thing

can be done with the units of charge in an electrical potential, leaving V ¼ �1=r or
V ¼ �Z=r for multiply charged species. See Mc Quarrie (1983) for a table of

atomic units and their SI equivalents. The atomic unit of energy in this system is the

hartree, h ¼ 4:2359� 10�18 joules, and the energy of the ground state of the

hydrogen atom is exactly 1
2
h. Be careful not to confuse the unit h with Planck’s

constant h.

The sum of two operators is an operator. Thus the Hamiltonian operator for the

hydrogen atom has � 1
2
r2 as the kinetic energy part owing to its single electron

plus �1=r as the electrostatic potential energy part, because the charge on the

nucleus is Z ¼ 1, the force is attractive, and there is one electron at a distance r

from the nucleus

ĤH ¼ �1
2
r2 � 1

r
ð6-5Þ
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Exercise 6-1

Write the Hamiltonian for the helium atom, which has two electrons, one at a distance r1
and the other at a distance r2.

Solution 6-1

ĤH ¼ �1
2
r2

1 � 1
2
r2

2 �
2

r1
� 2

r2
þ 1

r12

Notice the interelectronic repulsion term þ1=r12
These equations are mathematically identical to longer forms such as

ĤH ¼ � �h2

2m
r2

1 �
�h2

2m
r2

2 �
Ze2

4pe0r1
� Ze2

4pe0r2
þ 1

4pe0r12

for helium.

Using atomic units, the Schroedinger equation for ground-state hydrogen is

�1
2
r2 � 1

r

� �
�1s ¼ E�1s ð6-6Þ

where r2 is now a kinetic energy operator in 3-space. We can write the Hamiltonian

operator for the hydrogen atom in Cartesian 3-space, but the resulting Schroedinger

equation is very difficult to solve. Instead, it is converted to spherical polar coordinates by

routine but somewhat lengthy manipulations (Barrante, 1998). The Schroedinger equation

in the new coordinate system is separated, and the three resulting equations are solved for

R(r), �ðyÞ, and �ðfÞ. A similar procedure is followed to obtain the exact solution for the

hydrogen molecule ion in confocal ellipsoidal coordinates.

By extension of Exercise 6-1, the Hamiltonian for a many-electron molecule has

a sum of kinetic energy operators � 1
2
r2, one for each electron. Also, each electron

moves in the potential field of the nuclei and all other electrons, each contributing a

potential energy V,

ĤH ¼
X

�1
2
r2

i þ
X

Vi ð6-7Þ

where the terms Vi may be � or þ according to whether the electron is attracted (to

nuclei) or repelled (by other electrons). One can split up the attractive and repulsive

terms

ĤH ¼
X

½�1
2
r2

i þ Vi� þ 1
2

X 1

rij
ð6-8Þ

where the Vi terms are now all negative and the repulsive sum is multiplied by 1
2

because we do not want to count repulsions twice, once as i-j repulsions and again

as j-i repulsions. Equation (6-8) makes molecular problems look like nothing but a

bunch of hydrogen atom problems plus a small interelectronic repulsion term.

Unfortunately, this picture is deceptively simple, but it does lead to a useful

approximation.
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2. The Independent Particle Approximation

By analogy to the atomic orbitals that Schroedinger gave us for the hydrogen atom,

we assume that molecules will have orbitals too, that they will define certain

electron probability distributions in space, and that they will have specific energies.

We call them molecular orbitals. Indeed, the exact solution of the Schroedinger

equation for the hydrogen molecule ion Hþ
2 has exactly these characteristics, a low-

energy bonding orbital in which the electron probability density is relatively high

between the nuclei and a high-energy antibonding orbital in which there is a node in

electron probability density between the nuclei.

The Hamiltonian operator in Eq. (6-8) is called an n-electron Hamiltonian

ĤH ¼ ĤHð1; 2; 3; . . . ; nÞ

The reason the Schroedinger equation for molecules cannot be separated appears in

the last term, 1
2

P
1
rij
, involving a sum of repulsive energies between electrons. To

obtain this sum, or even one term of it, say for the ith electron, one must know

exactly where the jth electron is. This is because repulsive force is dependent on

distance. The position of the jth electron depends on the position of the ith electron,

however, which is what we are trying to find. Knowing either of these positions

exactly (as required by the problem) is a violation of the Heisenberg uncertainty

principle for electrons having a kinetic energy within finite limits. The problem is

insoluble.

In the independent particle approximation, the simplifying assumption is made

that V 0ðiÞ is an average potential due to a core that consists of the nuclei and all

electrons other than electron i

ĤHðiÞ ¼ �1
2
r2ðiÞ þ V 0ðiÞ ð6-9Þ

With this new approximation, the rij term does not appear [it is hidden in V 0ðiÞ] and
the Schroedinger equation becomes separable into n equations, one for each electron

ĤHðiÞcðiÞ ¼ EðiÞcðiÞ ð6-10Þ

where ĤHðiÞ includes the new potential energy term V 0ðiÞ. This term is unknown (the

rij problem hasn’t gone away); hence, no closed solution exists for Eq. (6-10). We

are using the symbol c for a wave function for which we do not have an exact

solution and c for an exact wave function. Throughout, there is an implicit

assumption that c exists even though it may not be mathematically accessible.

The Basis Set

One way to obtain an approximate solution of Eq. (6-10) is to select any set of basis

functions,

c ¼
X

aifi ð6-11Þ
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as an approximation to the true wave function. If the basis set of the fs is

judiciously chosen c may be a good approximation to the true �. As might

be expected, a poorly chosen basis set gives a poor approximation to �. After yet

one more simplifying assumption, we will look at one way of choosing an

appropriate basis set and we will develop an iterative procedure to obtain the

best c from any set
P

aifi.

3. The p-Electron Separation Approximation

It has been known for more than a century that hydrocarbons containing double

bonds are more reactive than their counterparts that do not contain double bonds.

Alkenes are, in general, more reactive than alkanes. We call electrons in double

bonds p electrons and those in the much less reactive C��C or CH bonds s
electrons. In Huckel theory, we assume that the chemistry of unsaturated hydro-

carbons is so dominated by the chemistry of their double bonds that we may

separate the Schroedinger equation yet again, into an equation for s electrons and

one for p electrons. We assume that we can ignore the s electrons, as we did the

nuclei, except for their contribution to the potential energy. We now have an

equation of the same form as Eq. (6-8), but one in which the Hamiltonian for all

electrons is replaced by the Hamiltonian for p electrons only

ĤH ¼
Xn

½�1
2
r2ðiÞ þ VpðiÞ� þ 1

2

X 1

rij
ð6-12Þ

with somewhat different meanings for the symbols. Now, n is the number of p
electrons of kinetic energy � 1

2
r2ðiÞ, and the potential energy term VpðiÞ represents

the potential energy of a single p electron in the average field of the framework of

nuclei and all electrons except electron i. There is one p electron for each C atom

participating in a system of C����C double bonds. In Huckel theory, this is now the

core potential.

In summary, we have made three assumptions 1) the Born–Oppenheimer

approximation, 2) the independent particle assumption governing molecular orbi-

tals, and 3) the assumption of p-s separation. The first two assumptions are

characteristic of any molecular orbital theory, but the third is unique to the Huckel

molecular orbital method.

The Huckel Method

In the late 1920s, it was shown that the chemical bond existing between two

identical hydrogen atoms in H2 can be described mathematically by taking a linear

combination of the 1s orbitals f1 and f2 of the two H atoms that are partners in the

molecule (Heitler and London, 1927). When this is done, the combination

c ¼ a1f1 þ a2f2 ð6-13Þ
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is a new solution of the Schroedinger equation that has the characteristics of a

chemical bond. Specifically, the energy calculated from Eq. (6-13) as a function of

internuclear distance R goes through a minimum when R approximates the bond

distance in H2. The Heitler–London method is known as the valence bond

approximation (VB). The right side of Eq. (6-13) is called a linear combination

of atomic orbitals (LCAO). The orbitals f1 and f2 are members of a small basis set.

There is also a negative combination of f1 and f2 that produces an antibonding

solution. Using the VB method, one arrives at a description of chemical bonding

from a somewhat different logical premise from that of the molecular orbital

(MO) method, but, in their more extended forms, the two methods approach each

other, as they must, because they are attempts to describe the same thing. The

LCAO method is only one of infinitely many ways that a molecular orbital can be

approximated.

A few years later, Huckel (1931, 1932) showed that the LCAO approximation

can be applied to the single electrons of the p atomic orbitals of the carbon atoms

that are partners in a C����C double bond. The p orbitals are considered to be

independent of the s bonded framework except for the potential energy of charge

interaction [Eq. (6-12)]. The linear combination is

c ¼
X

aipi ð6-14Þ

where the pi are the unhybridized p orbitals of the double-bonded carbon atoms

(Fig. 6-2) over two or more conjugated carbon atoms. When this sum is taken for

ethylene,

cþ ¼ a1p1 þ a2p2 ð6-15aÞ

and

c� ¼ a1p1 � a2p2 ð6-15bÞ

It is a property of linear, homogeneous differential equations, of which the

Schroedinger equation is one, that a solution multiplied by a constant is a solution

and a solution added to or subtracted from a solution is also a solution. If the

solutions p1 and p2 in Eq. set (6-15) were exact molecular orbitals, cþ and c�
would also be exact. Orbitals p1 and p2 are not exact molecular orbitals; they are

exact atomic orbitals; therefore, c is not exact for the ethylene molecule.

C C
H

H

H

H

π

π
Figure 6-2 The p orbital of Ethylene. Both interactions ------ between pz
orbitals of carbon contribute to a single p orbital of ethylene.
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The Expectation Value of the Energy: The Variational Method

Premultiplying each side of the Schroedinger equation by c gives

cEc ¼ c ĤHc

but E is a scalar; hence,

Ecc ¼ c ĤHc

for one electronic configuration in ethylene. For all electronic configurations, one

must integrate over all space dt

E

ð
cc dt ¼

ð
c ĤHc dt

or

E ¼
Ð
cHc dtÐ
c2dt

ð6-16Þ

The term configuration is used in this context to designate a specific pair of

locations for the two electrons in the p bond of ethylene. Even though we may not

know exactly where the electrons are, we can know the probability density that they

will be in a specific finite region of space by integrating over that region. From

Lewis theory (see, e.g., Ebbing and Gammon, 1999) we are accustomed to thinking

of an electron pair as constituting a chemical bond. The p bond in ethylene arises

from such a pair of electrons, one each from the unhybridized pz orbitals of carbon,

which are not engaged in s bonding.

It is a fundamental postulate of quantum mechanics that E in Eq. (6-16) is the

expectation value of the energy for wave function c. If the values of � are exact, E

is exact. If the c values are approximate, as they are in this case, E is an upper

bound on the true energy. Of two calculated E values, the higher one must be farther

from the true value than the lower one, so it is discarded. Minimizing E, which is

called the variational method, will be used to obtain the best value of c (the one

that gives the lowest energy) from a given basis set. Criteria other than the energy

may be selected, leading to different estimates of how closely c approximates its

exact value. All properties of the system approach their true values as c approaches

its exact value.

Exercise 6-2

In 1913 Bohr showed, by an argument that was essentially a combination of classical

mechanics and quantum mechanics as it was known at that time, that the energy spectrum

(ordered set of energy values) of hydrogen is given by

E ¼ � me4

8e20n2h2
ð6-17Þ
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where n ¼ 1 for the ground state and e0 ¼ 8:854� 10�12 C2N�1m�2 is a physical

constant called the vacuum permittivity. Substitute for the constants in the Bohr equation

to obtain a ground state value for E. Give units.

Solution 6-2

The energy of an electron attracted to a proton is negative relative to infinite particle

separation,

E ¼ � me4

8e20n2h2
¼ � 9:109� 10�31kgð1:602� 10�19CÞ4

8ð8:854� 10�12C2N�1m�2Þ2ð6:626� 10�34J sÞ2
¼ �2:179� 10�18J

Units :
kgC4

C4N�2m�4J2s2
¼ kgm

s2
N2m3

J2
¼ N3m3

J2
¼ N m ¼ J

where the charge is in coulombs (C). The vacuum permittivity e0, a constant from

Coulomb’s law of force f resulting from charge q interaction f ¼ ð1=4pe0Þðq2=r2Þ (Young
and Friedman, 2000), is used here essentially as a factor to convert the potential energy

between two charges from coulombs2 per meter to joules. As indicated, the units of e0 are
e0 : C2m�1=J ¼ C2N�1m�2. In atomic units, E ¼ �2:179� 10�18J ¼ exactly 1

2
hartree.

Exercise 6-3

Schroedinger (1926) showed that the wave function or orbital for the hydrogen atom in its

ground state can be written

� ¼ e�ar ð6-18Þ

where r is the radial distance between the proton and the electron and a contains several

constants. Find the upper bound of the energy for the hydrogen atom by the variational

method.

Solution 6-3

Choosing appropriate units for the charge, the Hamiltonian for radial motion can be

written

ĤH ¼ � �h2

2m

1

r2
d

dr
r2

d

dr
� e2

r
ð6-19Þ

where the form of the kinetic energy operator arises from the transformation of r2 from

Cartesian coordinates to spherical polar coordinates (Barrante, 1998). This leads to an

expression for the upper limit on E [Eq. (6-16)] from the wave function e�ar

E ¼
Ð1
0

e�ar � �h2

2m
1
r2

d
dr
r2 d

dr
� e2

r

	 

e�ar4pr2 drÐ1

0
e�arð Þ24pr2 dr
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where the factor 4pr2 dr accounts for the radial part of the Schroedinger equation. (The

radius vector from the nucleus may be in any direction; hence, its point may be anywhere

on the surface of a sphere of area 4pr2.) After factoring and canceling 4p,

E ¼
Ð1
0

e�ar � �h2

2m
1
r2

d
dr
r2 d

dr
� e2

r

	 

e�arr2 drÐ1

0
e�arð Þ2r2 dr ð6-20Þ

The kinetic energy operator operating on e�ar gives

� �h2

2m

1

r2
d

dr
r2

d

dr
e�ar ¼ � �h2

2m
a2 � 2a

r

� �
e�ar ð6-21Þ

and e�arð Þ2¼ e�2ar , so

E ¼
Ð1
0

e�ar � �h2

2m
a2 � 2a

r

� �
e�ar � e2

r
e�ar

	 

r2 drÐ1

0
e�2arr2 dr

ð6-22Þ

Expanding the numerator we get

E ¼
Ð1
0

� �h2a2
2m

r2e�2ar dr þ Ð1
0

�h2a
m
r e�2ar dr � Ð1

0
e2r e�2ar drÐ1

0
r2e�2ar dr

ð6-23Þ

This looks messy, but we really only need to evaluate two integrals, one with r and the

other with r2. The integrals are of the known formð1
0

xne�axdx ¼ n!

anþ1

so we get

E ¼ � �h2a2
2m

1
4a3
� �þ �h2a

m
1
4a2
� �� e2 1

4a2
� �

1
4a3

¼ � �h2a2

2m
þ �h2a

m
a� e2a ð6-24Þ

or

E ¼ �h2a2

2m
� e2a ð6-25Þ

We can minimize the energy of the system with respect to the minimization parameter a
by simply taking the first derivative and setting it equal to zero

d

da
�h2a2

2m
� e2a

� �
¼ �h2a

m
� e2 ¼ 0 ð6-26Þ

so that

a ¼ me2

�h2
ð6-27Þ
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(In more complicated cases, we shall have to verify that the extremum is a minimum.)

Once we know that a ¼ me2=�h2 we can substitute it back into the energy equation and

find

E ¼ �h2a2

2m
� e2a ¼ �h2

2m

me2

�h2

� �2

�e2
me2

�h2

� �

¼ 1

2

me4

�h2

� �
� me4

�h2

� �
¼ � 1

2

me4

�h2

� �
ð6-28Þ

or, for charge separation in a vacuum and E to be expressed in joules (which brings back

4pe0),

E ¼ � 1

2

me4

4pe0ð Þ2�h2
 !

¼ � me4

32p2e20�h
2

Recognizing that �h ¼ h=2p, we get

E ¼ � me4

8e20h2
ð6-17Þ

which is the energy expression we solved for in Exercise 6-2 with n ¼ 1 in the ground

state. Going back to Eq. (6-27) m ¼ e ¼ �h ¼ 1 in atomic units, so E ¼ � 1
2
hartree.

The upper bound in Exercise 6-3 turns out to be exactly the energy of the hydrogen

atom in its ground state. This should not come as a surprise, because we started with an

exact ground-state orbital. In the general case we will not know � but we will always be

able to identify the better of two trial functions because it will give the lower energy. The

simple hydrogen orbital e�ar is not normalized. If it had been normalized, we would have

had the form Ne�ar where both N and a are collections of constants.

COMPUTER PROJECT 6-1 j Another Variational Treatment of the

Hydrogen Atom

Part A. In Exercise 6-3 we found that the closed solutions for the integral

Eq. (6-23)

E ¼
Ð1
0

� �h2a2
2m

r2e�2ardr þ Ð1
0

�h2a
m
r e�2ardr � Ð1

0
e2r e�2ardrÐ1

0
r2e�2ardr

ð6-23Þ

lead to the least upper bound for the energy of the hydrogen atom in the ground

state: E ¼ � 1
2
hartree. Instead of solving three integrals in the numerator and one in

the denominator, carry out one numerical integration of the numerator and one

integration of the denominator in the expression

E ¼
Ð1
0
ð� 1

2
a2r2 þ ar � rÞ e�2ardrÐ1

0
r2e�2ardr

ð6-29Þ
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at several values of a to find out which value of a gives the most negative value of

E. Note that Eq. (6-29) is Eq. (6-23) with atomic units m ¼ e ¼ �h ¼ 1. We shall

expect E to be in atomic units of hartrees. In this determination, one can follow a

procedure similar to the method of steepest descent used in iterative computer

searches for an energy minimum. Pick two values of a and get the direction of

descent by going from the more positive to the more negative of the two resulting

energies. Now pick another a in the direction of descent and repeat this as many

times as needed to find the minimum. Of course, the energy must be a well-behaved

function of a for this to work (and it is). The size of the steps to be taken is

determined by trial and error; if you overshoot the minimum, go back and take

smaller steps.

To make an informed guess for your first value of a, you may wish to reread

the section on the Bohr theory of the hydrogen atom and the Schroedinger wave

functions for the hydrogen atom in a good physical or general chemistry book (see

Bibliography).

A sample determination is

Mathcad

a :¼ 1:3

p :¼
ð10
0

�:5 � a2 � r2 þ a � r� r
� �

exp �2 � a � rð Þ dr

q :¼
ð10
0

r2exp t � 2 � a � rð Þ dr

E :¼ p

q
E ¼ �0:455

This is not Emin, of course; you must find the minimum energy by systematic

variation of a. Alternatively, a QBASIC or TBASIC program can be written to

integrate Eq. (6-28) by Simpson’s rule.

Complete Part A of this project by determining about 10 energies at various

values of a over a range that is sufficient to prove that E is a well-behaved function

of a with a minimum. Report the least upper bound of E and the value of a at which

it is found.

Part B. Repeat the entire process of Part A using a Gaussian approximation to the

wave function for the ground state of the hydrogen atom

c ¼ e�g r2 ð6-30Þ

First decide what the integral equation corresponding to Eq. (6-29) is for the

approximate wave function (6-30), then integrate it for various values of g. Report
both g at the minimum energy and Emin for the Gaussian approximation function.

This is a least upper bound to the energy of the system. Your report should include a
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drawing of E as a function of g (SigmaPlot or equivalent) for enough values of g to

make a clear picture of what the minimization function looks like and whether it is

well behaved in the vicinity of Emin. Comment on the comparison between Emin for

the ground state approximation function in Part A and Emin for the Gaussian

approximation function in Part B.

Huckel Theory and the LCAO Approximation

Returning to Huckel theory for ethylene, and substituting the first LCAO

[Eq. (6-15a)] for c, we have

E ¼
Ð
a1p1 þ a2p2ð ÞĤH a1p1 þ a2p2ð ÞdtÐ

a1p1 þ a2p2ð Þ2dt ð6-31Þ

which is Eq. (6-16) with the linear combinations of atomic p orbitals substituted for

the approximate molecular orbitals c. Expanding this equation yields four integrals

in the numerator and four in the denominator. This takes a lot of space, so we use

the notationð
p1ĤHp1 dt ¼

ð
p2ĤHp2 dt ¼ a ð6-32aÞð

p1ĤHp2 dt ¼
ð
p2ĤHp1 dt ¼ b ð6-32bÞð

p1p1 dt ¼
ð
p2p2 dt ¼ S11 ¼ S22 ð6-32cÞ

and ð
p1p2 dt ¼

ð
p2p1 dt ¼ S12 ¼ S21 ð6-32dÞ

We have assumed that the order of the subscripts on the atomic orbitals p is

immaterial in writing a, b, and S. In the general case, these assumptions are not

self-evident, especially for b. The interested reader should consult a good quantum

mechanics text (e.g., Hanna, 1981; McQuarrie, 1983; Atkins and Friedman, 1997)

for their justification or critique.

The expression for the energy, after all assumptions and notational simplifica-

tions have been made, is

E ¼ a21aþ 2a1a2bþ a22a
a21S11 þ 2a1a2S12 þ a22S22

ð6-33Þ

If we could evaluate a, b, and S, which are called the coulomb, exchange, and

overlap integrals respectively, we could compute E.
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We do not know either side of Eq. (6-33), but we do know that E is to be

minimized with respect to some minimization parameters. The only arbitrary

parameters we have are the a1 and a2, which enter into the LCAO. Thus our

normal equations are

qE
qa1

¼ 0 ð6-34aÞ

and

qE
qa2

¼ 0 ð6-34bÞ

These minimizations lead to

a1aþ a2b ¼ Eða1S11 þ a2S12Þ ð6-35aÞ

and

a1bþ a2a ¼ Eða1S12 þ a2S22Þ ð6-35bÞ
or

a1ða� ES11Þ þ a2ðb� ES12Þ ¼ 0 ð6-36aÞ

and

a1ðb� ES12Þ þ a2ða� ES22Þ ¼ 0 ð6-36bÞ

A further simplification is made. The wave functions p1 and p2, which are

orthogonal and normalized in the hydrogen atom, are assumed to retain their

orthonormality in the molecule. Orthonormality requires that

S11 ¼ S22 ¼
ð
p1p1 dt ¼

ð
p2p2 dt ¼ 1 ð6-37aÞ

and

S12 ¼ S21 ¼
ð
p1p2 dt ¼

ð
p2p1 dt ¼ 0 ð6-37bÞ

This yields

a� Eð Þa1 þ b a2 ¼ 0 ð6-38aÞ

and

b a1 þ a� Eð Þa2 ¼ 0 ð6-38bÞ
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as the normal equations having the solution set fa1; a2g. In this context, the normal

equations are also called secular equations. The exchange integral b is sometimes

called the resonance integral.

Homogeneous Simultaneous Equations

What we formerly called the nonhomogeneous vector (Chapter 2) is zero in the pair

of simultaneous normal equations Eq. set (6-38). When this vector vanishes, the

pair is homogeneous. Let us try to construct a simple set of linearly independent

homogeneous simultaneous equations.

xþ y ¼ 0 ð6-39aÞ
xþ 2y ¼ 0 ð6-39bÞ

These equations cannot be true for any solution set other than {0, 0}. The

determinant of the coefficients is not zero

2 1

1 1

����
���� ¼ 2� 1 ¼ 1 ð6-39cÞ

Any linearly independent set of simultaneous homogeneous equations we can

construct has only the zero vector as its solution set. This is not acceptable, for it

means that the wave function vanishes, which is contrary to hypothesis (the electron

has to be somewhere). We are driven to the conclusion that the normal equations

(6-38) must be linearly dependent.

Linearly dependent sets of homogeneous simultaneous equations, for example,

xþ 2y ¼ 0 ð6-40aÞ
2xþ 4y ¼ 0 ð6-40bÞ

are true for any solution set you care to try. They have infinitely many solution sets.

The determinant of the coefficients of linearly dependent homogeneous simulta-

neous equations is zero. For example,

1 2

2 4

����
���� ¼ 4� 4 ¼ 0 ð6-40cÞ

which is to say that the matrix of coefficients

1 2

2 4

� �
ð6-41Þ

is singular.
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To select one from among the infinite number of solution sets, we must have an

additional independent nonhomogeneous equation. If the additional equation is

xþ y ¼ 1 ð6-42Þ

the solution set f2; �1g satisfies all three equations [one of the pair (6-40) is

superfluous] and is the unique solution set for the homogeneous linear simultaneous

equation pair plus the additional equation.

In what immediately follows, we will obtain eigenvalues E1 and E2 for

ĤHc ¼ Eic from the simultaneous equation set (6-38). Each eigenvalue gives a p-
electron energy for the model we used to generate the secular equation set. In the

next chapter, we shall apply an additional equation of constraint on the minimiza-

tion parameters fa1; a2g so as to obtain their unique solution set.

The Secular Matrix

The coefficient matrix of the normal equations (6-38) for ethylene is

a� E b
b a� E

� �
ð6-43Þ

By the criterion of Exercise 2-9, E is an eigenvalue of the matrix in a and b. There
are two secular equations in two unknowns for ethylene. For a system with n

conjugated sp2 carbon atoms, there will be n secular equations leading to n

eigenvalues Ei. The family of Ei values is sometimes called the spectrum of

energies. Each secular equation yields a new eigenvalue and a new eigenvector (see

Chapter 7).

If we divide each element of the secular matrix by b and perform the substitution

x ¼ a� Ei=b, we get

x 1

1 x

� �
ð6-44Þ

as the coefficient matrix of the equation set

x 1

1 x

� �
a1
a2

� �
¼ 0 ð6-45Þ

For the equation set to be linearly dependent, the secular determinant must be

zero

x 1

1 x

����
���� ¼ 0 ð6-46Þ
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Expanding the determinant,

x2 � 1 ¼ 0

so that

x ¼ �1 ð6-47Þ

There are n ¼ 2 roots of the polynomial, one for each eigenvalue in the Ei

spectrum.

We are free to pick a reference point of energy once, but only once, for each

system. Let us choose the reference point a. We have obtained the energy

eigenvalues of the p bond in ethylene as one b greater than a (antibonding) and

one b lower than a (bonding) (Fig. 6-3).

Finding Eigenvalues by Diagonalization

If we drop x from the secular matrix

x 1

1 x

� �

we get

0 1

1 0

� �
ð6-48Þ

which has the eigenvalues �1, as we found by expanding the secular determinant

[Eq. (6-47)]. If, using an equivalent method, we diagonalize matrix (6-48), the

eigenvalues can be read directly from the principal diagonal of the diagonalized

matrix

�1 0

0 1

� �
ð6-49aÞ

or

1 0

0 �1

� �
ð6-49bÞ

π∗

π

αα
Figure 6-3 The Energy Spectrum of

Ethylene. The p orbital is bonding, and

the p* orbital is antibonding.
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where the order of the roots on the principal diagonal depends on the method of

diagonalization but the eigenvalues do not. If we can diagonalize a matrix

comparable to matrix (6-48) by deleting x from any secular matrix, we shall

have obtained the eigenvalues for the corresponding p electron system, in units of b,
relative to an arbitrary energy a. Diagonalization does not change the eigenvalues.

Mathcad

A :¼ 0 1

1 0

� �
B :¼ �1 0

0 1

� �

eigenvals ðAÞ ¼ �1

1

� �
eigenvals ðBÞ ¼ �1

1

� �

By substituting back into the definition of x, we get the solution set for the energy

spectrum Ei. In ethylene there are two elements on the diagonal, x11 and x22,

leading to E1 and E2. In larger conjugated p systems, there will be more.

If ‘‘dropping x,’’ as is usually said, sounds a little arbitrary to you (it does to me,

too), what we are really doing is concentrating on one term of a sum

x 1

1 x

� �
¼ x 0

0 x

� �
þ 0 1

1 0

� �
ð6-50Þ

Diagonalization (the x matrix is already diagonal) yields

x 0

0 x

� �
þ �1 0

0 1

� �
¼ x� 1 0

0 xþ 1

� �
ð6-51Þ

that is, the roots of the secular matrix are

x	 1 ¼ 0

x ¼ � 1
ð6-52Þ

Polynomial root finding, as in the previous section, has some technical pitfalls

that one would like to avoid. It is easier to write reliable software for matrix

diagonalization (QMOBAS, TMOBAS) than it is for polynomial root finding;

hence, diagonalization is the method of choice for Huckel calculations.

Rotation Matrices

If we premultiply and postmultiply the matrix

0 1

1 0

� �
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by the matrix

cos y sin y
sin y �cos y

� �
ð6-53Þ

where y ¼ 45
, the result is

1 0

0 �1

� �
ð6-54Þ

which is the original matrix rotated one-eighth turn or 45
, with a sign change in

the second row. What we are really doing is rotating the coordinate system that we

have arbitrarily imposed on the wave (vector) function c in a way that is similar to

the coordinate rotation we used to discover the principal axes of an ellipse (see

What’s Going on Here?, Chapter 2).

The premultiplying and postmultiplying matrix is often called a rotation matrix

R. The rotation matrix

R ¼ cos y �sin y
sin y cos y

� �
ð6-55Þ

is widely used to do the same thing as rotation matrix (6-53). It yields

�1 0

0 1

� �
ð6-56Þ

By rotating it through the proper angle, we have diagonalized matrix (6-48).

Diagonalization yields the solution set x ¼ ða� EÞ=b ¼ f�1; 1g. Multiplying by b,

a� E ¼ 	 b ð6-57aÞ
or

E ¼ a� b ð6-57bÞ

which leads to the two-level energy spectrum for ethylene as shown in Fig. 6-3.

Generalization

The advantage of the method just described is that it can be generalized to

molecules of any size. Setting up quite complicated secular matrices can be

reduced to a simple recipe. A computer scheme can be used to diagonalize the

resulting matrices by an iterative series of rotations.

The dimension of the matrix is the number of atoms in the p conjugated system.

Let us take the three-carbon system allyl as our next step. Concentrate on the end
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atom in the system and write an x in the i ¼ j position for that atom. Follow this by

writing a 1 in the position corresponding to any atom attached to the x atom. For

any atom not attached to x, enter a zero. For allyl, the x goes into the 1, 1 position

C��C��C
"

This leads to the top row of the secular matrix

x 1 0

Concentrating on the second atom in the allyl chain leads to the row 1 x 1, and

concentrating on the third atom gives 0 1 x.

The full allyl matrix is

x 1 0

1 x 1

0 1 x

0
@

1
A ð6-58Þ

The zeros in the 1,3 and 3,1 positions correspond physically to the assumption that

there is no interaction between p electrons of atoms that are not neighbors, a

standard assumption of Huckel theory.

If we had been interested in the cyclopropenyl system,

C C
C

we would have been led to the matrix

x 1 1

1 x 1

1 1 x

0
@

1
A ð6-59Þ

Butadiene,

C
C

C
C

yields

x 1 0 0

1 x 1 0

0 1 x 1

0 0 1 x

0
BB@

1
CCA ð6-60Þ

and so on. We have moved away from notation involving localized double bonds as

in ethylene, and we are working from a picture of p bonds delocalized in some way
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over a carbon atom framework involving all carbon atoms in the conjugated system.

We speak of the entire conjugated system as, for example, the butadienyl system,

meaning butadiene and any ions or free radicals that can be derived from it without

moving any carbon atoms. In the next chapter we shall be more specific about how

the electrons are delocalized over the carbon atom framework.

The rotation matrix R must also be given in general form. If the pre- and

postmultiplying matrix is contained as a block within a larger matrix containing

only ones on the principal diagonal and zeros elsewhere (aside from the rotation

block), the corresponding block of the operand matrix is rotated. Elements outside

the rotation block are changed, too. For example,

cos y sin y 0

sin y �cos y 0

0 0 1

0
B@

1
CA

0 1 0

1 0 1

0 1 0

0
B@

1
CA

cos y sin y 0

sin y �cos y 0

0 0 1

0
B@

1
CA

¼
1 0 0:707

0 �1 �0:707

0:707 �0:707 0

0
B@

1
CA ð6-61Þ

where y was once again taken as 45
. The rotation matrix can be made as large as

necessary to conform with any operand matrix. The rotation block may be placed

anywhere on the principal diagonal of the rotation matrix R. The allyl matrix has

not been diagonalized by Eq. (6-61), only part of it has.

The Jacobi Method

The Jacobi method is probably the simplest diagonalization method that is well

adapted to computers. It is limited to real symmetric matrices, but that is the only

kind we will get by the formula for generating simple Huckel molecular orbital

method (HMO) matrices just described. A rotation matrix is defined, for example,

R ¼

1 0 0 0 etc:
0 cos y sin y 0

0 sin y �cos y 0

0 0 0 1

etc: 1

etc:

0
BBBBBB@

1
CCCCCCA ð6-62Þ

so as to ‘‘attack’’ a block of elements of the operand matrix. In the case of rotation

matrix (6-62), the block with a22 and a33 on the principal diagonal is attacked.

Now,

tan 2y ¼ 2aij

aii � ajj
ð6-63Þ
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where aij denotes the ij element in matrix A and aii and ajj are on the principal

diagonal. (The double subscript on the elements aij distinguish them from the

solution set faig.) Initially, element aij is adjacent to element aii and above element

ajj as it is in the butadienyl system, but this will not be true later in the

diagonalization and is not necessary even at the outset. Element aij can be off

the tridiagonal as in the cyclopropenyl matrix, in which case the rotation matrix

would be

cos y 0 sin y
0 1 0

sin y 0 �cos y

0
@

1
A

The matrix equation

RAR ¼ A0 ð6-64Þ
generates a matrix A0 that is similar to A (see section on the transformation matrix

in Chapter 2) but has had elements aij and aji reduced to zero. The eigenvalues of A

are proportional to the lengths of the corresponding eigenvectors, and orthogonal

transformations preserve the lengths of vectors (Chapter 2), so similar matrices

have the same eigenvalues.

The good news is that any aij and aji elements not on the principal diagonal can

be converted to zero by choosing the right R matrix. The bad news is that each

successive RAR multiplication destroys all zeros previously gained, replacing them

with elements that are not zero but are smaller than their previous value. Thus the

RAR multiplication must be carried out a number of times that is not just equal to

one-half the number of nonzero off-diagonal elements, but is very large, strictly

speaking, infinite. The sum of the off-diagonal elements cannot be set equal to zero

by the Jacobi method, but it can be made to converge on zero. The Jacobi method is

an iterative method.

Let us follow the first few iterations for the allyl system by hand calculations. We

subtract the matrix xI from the HMO matrix to obtain the matrix we wish to

diagonalize, just as we did with ethylene. With the rotation block in the upper left

corner of the R matrix (we are attacking a12 and a21), we wish to find

R

0 1 0

1 0 1

0 1 0

0
@

1
A R

First,

tan2y ¼ 2aij

aii � ajj
¼ 1

y ¼ 45


sin y ¼ cos y ¼ 1ffiffiffi
2

p ¼ 0:7071
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By the simple HMO procedure, it is always true that sin y ¼ cos y ¼ 0:7071 on the

first iteration. Now, to eliminate a12,

RAR ¼ A0 ð6-65Þ

but this is just the multiplication we used as an illustration in the last section. We

know that the result is matrix (6-61).

1 0 0:707
0 �1 �0:707

0:707 �0:707 0

0
@

1
A

Because both matrix A and the transformation are symmetrical, reducing the a12
element to zero also reduces a21 to zero. We have gained the zeros we wanted, but

we have sacrificed the zeros we had in the 1,3 and 3,1 positions. Other than those

eliminated, the off-diagonal elements are no longer zero but they are less than one.

Attacking the a13 ¼ a31 ¼ 0:7071 element produces

A00 ¼
1:37 �0:325 0

�0:325 �1 0:628
0 0:628 �0:37

0
@

1
A

and so on for further iterations of the method. Again, the zeros previously gained

are lost, but they are replaced by nonzero elements that are less than 0.7071. Nine

iterations yield

A000000000 ¼
�1:41 0 0

0 0 0

0 0 1:41

0
@

1
A

where elements that are negligibly small, say 10�7, are recorded as zero. The

energy levels or eigenvalues for the three-carbon allyl model are

x ¼ �1:41; 0; 1:41 ð6-66Þ

The order of the roots as generated by diagonalization is dependent on the

algorithm, as are some of the intermediate matrices generated in the diagonalization

procedure. Programs are written to be ‘‘opportunistic,’’ that is, to seek a quick

means of conversion on the eigenvalues, and the strategy chosen may differ from

one program to the next. Many programs, including the one to be described in the

next section, have a separate subroutine at the end that takes the eigenvalues in

whatever order they are produced by diagonalization and orders them, lowest to

highest or vice versa.

In conclusion of this section, it is remarkable that molecular orbitals are never

really used in Huckel theory, that is, the integrals a and b are not evaluated. Huckel
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theory is a scheme for ordering energy levels according to the postulate in

Eq. (6-31), the LCAO approximation, and the geometry of the p system. In

chemical graph theory, where matrices like the right side of Eq. (6-48) are called

adjacency matrices, the relationship between molecular topology and energy is

investigated further (Trinajstic, 1983).

Programs QMOBAS and TMOBAS

A simple method of generating the eigenvalues for the general HMO matrix

(Dickson, 1968, Rogers et al., 1983) starts by searching the HMO matrix to find

the largest off-diagonal element, that is, the one most suitable for attack. Once this

element is found, the rotation angle is calculated by Eq. (6-63) and the matrix is

partially diagonalized. The search is repeated, the next target element is selected,

the rotational angle is calculated, and so on. After each rotation, the off-diagonal

elements are tested to see whether they are sufficiently close to zero. Of course, they

are not at the beginning, but they get smaller as the rotation is iterated. An arbitrary

standard is set up so that when the diagonal elements have been reduced below a

certain level, the rotation iterations stop. In QMOBAS and TMOBAS, the criterion

for exit from the iterative diagonalization loop is that the root mean square sum of

the off-diagonal elements be equal to or less than 10�7 times its original value.

Degenerate roots (different roots having the same value) can produce computa-

tional difficulties. These problems can usually be circumvented by entering the

HMO matrix with elements that are slightly different from 1. For example, 1.0001

might be used.

Heterocyclic and linear heteronuclear p conjugated systems pose a special

problem because the heteroatom has an electron density that is greater than or

less than the electron density of carbon. The Jacobi procedure suggests an empirical

method of compensating for the increased electron density at, for example,

nitrogen, in the way in which elements on the principal diagonal are built up by

accretion during the iterative diagonalization procedure. If we place a nonzero

element on the principal diagonal of the matrix to be diagonalized (after the xI

matrix has been subtracted), when the accretion process is over that position will

have an energy lower (or higher depending on the sign of the root) than it otherwise

would have had.

Let us take the nitrogen in pyrrole, which is electron rich, as an example. In

pyrrole, the value of 1.5 in the 1,1 position causes the lowest energy level to be

lowered and the electron density about the nitrogen to be larger than it would be for

carbon, which has a zero in the 1,1 position. The value 1.5 is selected by trial and

error by comparison to experimental values for spectral transitions, resonance

energies, etc. and represents a literature consensus (Strietwieser, 1961). Empirical

modifications of off-diagonal entries in the HMO matrix are also used for bonds

connecting carbon to atoms other than carbon.

For pyrrole, using QMOBAS with 1.5 in the lead position of the HMO matrix,

31 iterations (system specific) yield a lowest eigenvalue of �2:55b: E ¼
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f�2:55; 1:20;�1:15; 1:62;�0:62g. This will be taken up in more detail in the next

chapter.

COMPUTER PROJECT 6-2 j Energy Levels (Eigenvalues)

An energy spectrum is an ordered set of quantum mechanical energy levels. Each

energy level coincides with an eigenvalue of the Schroedinger equation. In Huckel

molecular orbital theory, energies are given in units of b relative to a, which is

arbitrarily taken to be zero. Energy spectra are often presented as diagrams like Fig.

6-3. The wave function for the higher of the two energies in Fig. 6-3 has one

internal node, but the lower energy function has no internal nodes. This is general;

the greater the number of nodes, the higher the energy. Energy spectra are usually

more complicated than Fig. 6-3 and have several levels for large molecules. The

term spectrum is more commonly used to describe a pattern of absorption or

emission of electromagnetic radiation as bands or lines, but the relation between an

electromagnetic radiation spectrum and a molecular or atomic energy spectrum is

very close so it is not unreasonable to use the term in this context also.

Procedure. The allyl model is the default in program QMOBAS and TMOBAS. It

runs without any modification of the DATA input. Other models require modifica-

tion. The Huckel matrix for the allyl model has already been given. Its solution

yields three eigenvalues and three eigenfunctions, with zero, one, and two internal

nodes. Draw the energy level manifold for the allyl model. Any energy below a in

energy is bonding; label it p. Any level above a is antibonding; label it p*. An
orbital at the same level as a is nonbonding; label it n.

Execute QMOBAS and determine the energy levels (eigenvalues) for the

ethylene, allyl, butadienyl, and pentadienyl models.

C C C C C C C C C

C C C C C

The upper triangular part of the Huckel matrix for ethylene, Eq. (6-48), exclusive of

the diagonal elements consists of only one element. It can be entered into Program

QMOBAS by making the dimension of the matrix 2 and changing the data

statement to enter 1 in the 1,2 position

DATA 2

DATA 1,2,1,999

The four numbers in the second DATA statement give row, column, entry followed

by 999 to show that data input is finished. Only the positive, nonzero, upper

triangular part (one element in this case) is entered because the program negates

elements and reflects the upper triangular matrix across the diagonal in the

statement A(I,J) ¼ �F; A(J,I)¼�F to give the full Huckel matrix. This is

permissible because Huckel matrices are symmetric. The alphabetic input should

be changed to

A$ ¼ ‘‘ethylene’’

HUCKEL MOLECULAR ORBITAL THEORY I: EIGENVALUES 195



or any other identifying string variable you like. String variables are discussed by

Ebert, Ederer ,and Isenhour (1989).

The upper triangular matrix for the butadienyl system

0 1 0 0

0 1 0

0 1

0

0
BB@

1
CCA

is input by means of the DATA statements

DATA 4

DATA 1,2,1,0,2,3,1,0,3,4,1,999

along with an appropriate A$ ¼ ‘‘. . .’’. A zero in the 4,4 position is not necessary.

Each nonzero element in the butadienyl input is 1. The input element 1.0 also

works but locations, for example, the 1,2 location, must be specified by integers. In

some applications, for example, pyridine (Chapter 7), decimal inputs other than 1.0

are used. Substitute LPRINT for PRINT in QMOBAS to obtain hard copy. Draw

diagrams analogous to Fig. 6-3 that show the energy levels in their proper order,

lowest to highest. If an energy turns out to be zero (relative to a), label it

nonbonding, n. Remember that, because of rounding and a finite number of matrix

rotations, that the zero roots may be output as very small values, say 10�7 or so.

Using QMOBAS, calculate and order the eigenvalues for the cyclopropenyl,

cyclobutadienyl, and cyclopentadienyl models. Draw the energy level manifolds

and compare them with the linear models. Two roots with the same energy are said

to be degenerate. They are not duplicate solutions to the Schroedinger equation

because they have different coefficients (eigenfunctions). See Chapter 7 for a

discussion of eigenfunctions. Are there any degenerate roots among these model

systems?

Repeat each calculation after having inserted a ‘‘counter’’ into Program

QMOBAS to count the number of iterations. The statement ITER ¼ ITER þ 1

placed before the GOTO 340 statement increments the contents of memory location

ITER, starting from zero, on each iteration. The statement PRINT ‘‘ITER’’, ITER

prints out the accumulated number of iterations at the end of the program run.

Comment on the number of iterations needed to satisfy the final norm V1 for the

different Huckel MO calculations.

Alternative procedure: TMOBAS. The procedure using TMOBAS is the same as

for QMOBAS. The TMOBAS program is slightly different in appearance from

QMOBAS, but it functions in the same way. See the TrueBasic documentation for

details.
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Alternative procedure: Mathcad. Follow the procedure above except that where

QMOBAS is indicated, use Mathcad instead. Enter the Huckel molecular orbital

matrix, modified by subtracting xI, with some letter name. For example, call

the modified matrix A. Type the command eigenvals(A) ¼ with the name of

the modified HMO matrix in parentheses. Mathcad prints the eigenvalues. The

command eigenvecs(A) yields the eigenvectors, which are useful in ordering the

energy spectrum.

Mathcad

A :¼
0 1 0

1 0 1

0 1 0

0
B@

1
CA

eigenvals ðAÞ ¼
1:414

0

�1:414

0
B@

1
CA eigenveces ðAÞ ¼

0:5 0:707 0:5

0:707 0 �0:707

0:5 �0:707 0:5

0
B@

1
CA

COMPUTER PROJECT 6-3 j Huckel MO Calculations of

Spectroscopic Transitions

Linear polyenes (butadiene, hexatriene, etc.) absorb ultraviolet radiation. They have

absorption maxima at the approximate wavelengths given in Table 6-1.

These absorptions are ascribed to p-p* transitions, that is, transitions of an

electron from the highest occupied p molecular orbital (HOMO) to the lowest

unoccupied p molecular orbital (LUMO). One can decide which orbitals are the

HOMO and LUMO by filling electrons into the molecular energy level diagram

from the bottom up, two electrons to each molecular orbital. The number of

electrons is the number of sp2 carbon atoms contributing to the p system of a

neutral polyalkene, two for each double bond. In ethylene, there is only one

occupied MO and one unoccupied MO. The occupied orbital in ethylene is b below

the energy level represented by a, and the unoccupied orbital is b above it. The

separation between the only possibilities for the HOMO and LUMO is 2.00b.
Using QMOBAS, TMOBAS, or Mathcad and the method from Computer

Project 6-2, calculate the energy separation between the HOMO and LUMO in

units of b for all compounds in Table 6-1 and enter the results in Table 6-2. Enter

the observed energy of ultraviolet radiation absorbed for each compound in units of

cm�1. The reciprocal wavelength is often used as a spectroscopic unit of energy.

Table 6-1 Ultraviolet Absorption Maxima for Polyenes

Ethylene 161 nm

Buta-1,3-diene 217

Hexa-1,3,5-triene 244

Octa-1,3,5,7-tetraene 303
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Radiation of wavelength 161 nm, for example has an energy of 1=161� 10�9m ¼
1=161� 10�7cm ¼ 6:21� 104 cm�1.

The quantity b is an energy. The separation in MO levels (2b in the case of

ethylene) is a change in energy �E and follows Planck’s equation �E ¼ hn. The
results in Table 6-2 give four spectroscopic energies of radiation absorbed �nn, in
units of cm�1, required to promote electrons across four different energy gaps

measured in units of b. Plot �E in units of b vs. the spectroscopic energy �nn. Using
Program QLLSQ, TLLSQ, or TableCurve, obtain the best slope of the function b
vs. �nn. This is the amount of energy in cm�1 per b, that is, the ‘‘size’’ of the energy
unit b. The calculation is approximate because the Huckel approximations are

crude, but even an order of magnitude calculation of b is useful. Calculate b in units

of joules, kJ mol�1, and electron volts (eV).

PROBLEMS

1. For the atomic orbital � ¼ e�ar, where r is the radial distance between the

proton and the electron, show that [Eq. (6-21)]

� �h2

2m

1

r2
d

dr
r2

d

dr
e�ar ¼ � �h2

2m
a2 � 2a

r

� �
e�ar

2. Evaluate the integrals
Ð1
0

r2e�2a rdr and
Ð1
0

r e�2a rdr, which are necessary to

obtain Eq. (6-25).

3. The expression for the Coulombic potential energy e=4pe0 can be carried

through the entire derivation in Exercise 6-3 to arrive at Eq. (6-17). Show that this is

so.

4. For many purposes, it is useful to replace the atomic orbital � ¼ e�ar with a

Gaussian function c ¼ e�g r2 , where g is a constant. Show that

� �h2

2m

1

r2
d

dr
r2

d

dr
e�g r2 ¼ � �h2

2m
4g2r2 � 6g
� �

e�g r2

5. Show that

E ¼
Ð1
0

� �h2g2

m
2r4e�2grdr þ Ð1

0
�h2g
m
3r2 e�2grdr � Ð1

0
e2r e�2grdrÐ1

0
r2e�2grdr

for the approximate wave function c ¼ e�g r2 .

Table 6-2

Compound HOMO LUMO (LUMO-HOMO) �nn ¼ 1
l, cm

�1

Ethylene aþ b a� b �2:00b . . .
Buta-1,3-diene. . .
. . .
etc.
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6. Using the results from the previous two problems, evaluate the integrals in the

answer to Problem 5 and find E as a closed algebraic expression for the

Gaussian trial function.

7. Show that, at the minimum energy (least upper bound for the energy arising

from the approximate wave function c ¼ e�g r2 ), the minimization parameter g
is g ¼ 8

9p.

8. What is the precise value of the least upper bound of the energy for the

approximate wave function c ¼ e�g r2?

9. Show that Eqs. (6-35) follow from Eqs. (6-34).

10. Compute the HMO eigenvalues for the cyclobutadienyl system.

11. Draw the energy level diagram for cyclobutadiene.

12. Write the secular matrix for the methylenecyclopropenyl system.

13. Compute the eigenvalues and draw the energy level diagram for methylene-

cyclopropene.

14. Write the secular matrix, compute the eigenvalues, and draw the energy level

diagram for fulvene.

15. Compute the HMO eigenvalues for benzene and draw its energy level diagram.

16. Draw the energy level diagram for pyrrole.

N H

Place a 2 on the principal diagonal for N. Make no alteration in b for the C��N
bond.

17. One convention (Dickson, 1968) for oxygen heterocycles sets the coulomb

integral at aþ 2b and the resonance integral at
ffiffiffi
2

p
b. For the oxirane moiety,

thought to be important in steroid biosynthesis,

C C

O

the Huckel matrix is of the same form as the allyl model except that 2 is placed

on the principal diagonal in the 1,1 position and
ffiffiffi
2

p ¼ 1:414 is placed on the

off-diagonal for each C��O bond. Run MOBAS or Mathcad with the input

matrix so modified to find the eigenvalues and coefficients (eigenvectors) for

the oxirane model.
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18. Long ago, Thiel discovered that cyclopentadiene, heated under N2 with a

dispersion of potassium in benzene, yields potassium cyclopentadienide

+ K K+ −

but that the analogous reaction with cycloheptatriene does not go

+ K No Reaction

Draw the energy level spectra for the two cyclic models; fill in an appropriate

number of electrons for the negative ion for each model. Suggest a reason why

one reaction goes and the other does not.

19. In the nineteenth century, Merling treated cycloheptatriene with bromine and

obtained a crystalline solid. Reasoning from some information gained in

working Problem 15, what might this solid be?

20. Show that �nn ¼ �E=ch has the units of cm�1.
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C H A P T E R

7
Huckel Molecular Orbital
Theory II: Eigenvectors

Each eigenvalue has an eigenvector associated with it. The eigenvectors tell us as

much about the atomic or molecular system as the eigenvalues do. Like eigenva-

lues, eigenvectors can be exact for simple systems but in general we know them

only approximately. Eigenvectors define a vector space that has a number of

dimensions equal to the number of basis functions. Unfamiliar and perhaps

daunting as you may find spaces with dimensions beyond the three dimensions

of Euclidean space, we shall soon be working in many-dimensional spaces so

frequently you will find them quite ordinary.

Recapitulation and Generalization

Let us pause to recapitulate and generalize our mathematical position. We assume,

in consequence of the single-electron approximation, that there is a unique set of

solutions to the Schroedinger equation for each molecule called orbitals, each

orbital associated with one energy in the energy spectrum of the molecule. We

assume further (as has been verified by considerable indirect experimental

evidence) that this spectrum is analogous to the energy spectrum of the hydrogen

atom in that there are many allowed energy levels separated by energy regions that
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are not allowed. Conversely, we expect the details of spacing and multiplicity of

molecular energy levels to differ from those of atomic energy spectra.

The complexity of molecular systems precludes exact solution for the properties

of their orbitals, including their energy levels, except in the very simplest cases. We

can, however, approximate the energies of molecular orbitals by the variational

method that finds their least upper bounds in the ground state as Eq. (6-16)

Ei ¼
Ð
cHc dtÐ
c2dt

where the subscript i indicates that there are, in general, many levels in the

spectrum. Taking normalized orbitals leads to the simplification

Ei ¼
ð
cHc dt

Every electron in a molecule has a Coulombic attraction to ‘‘its own’’ nucleus

Hii ¼
Ð
ciĤHcidt. In addition, it has an attraction to all other nuclei in the molecule

Hij ¼
Ð
ciĤHcjdt. Coulombic attraction between nuclei and the electrons normally

associated with the nucleus in the pure atomic state is very strong, so the nuclear-

electron energy Hii is large. It accounts for most of the energy of the molecule, but

it is not what holds the molecule together. The energy holding the molecule

together is the bonding energy of attraction Hij between nuclei and electrons that

are not in their normal atomic sphere of Coulombic force. Thus we have two

distinct kinds of energy integrals in molecules, Hii associated with a large residual

energy retained in atoms when they form chemical bonds and a relatively small

amount of bonding energy Hij. In addition, orbital overlap integrals are defined

Sij ¼
Ð
cicj dt and Sii ¼

Ð
cici dt. The integral Sii ¼ 1 for normalized wave

functions.

The expansion of any molecular orbital over a basis set fk

c ¼
X
k

akfk

leads to a set of arbitrary expansion coefficients ak, which we optimize by imposing

the conditions generalized from Eq. (6-34a and b)

qE
qa1

¼ qE
qa2

¼; . . .
qE
qak

¼; . . .
qE
qan

¼ 0 ðk ¼ 1; 2; 3; . . . ; nÞ ð7-1Þ

to find the energy minimum in an n-dimensional vector space.
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These expansion coefficients fakg are the minimization parameters of a set of

simultaneous equations. Imposition of all the minimization conditions (7-1) for

k ¼ 1; 2; . . . ; n leads to the set of n equations

ðH11�S11EÞa1þðH12�S12EÞa2þðH13�S13EÞa3þ���þðH1n�S1nEÞan¼0

ðH21�S21EÞa1þðH22�S22EÞa2þðH23�S23EÞa3þ���þðH2n�S2nEÞan¼0

..

. ..
.

ðHn1�Sn1EÞa1þðHn2�Sn2EÞa2þðHn3�Sn3EÞa3þ���þðHnn�SnnEÞan¼0

ð7-2Þ

called the secular equations. The secular equations must all be equal to zero

because the minimization conditions [Eq. (7-1)] set each derivative equal to zero.

The number of equations and unknowns is the number of basis functions. In the

simplest case of a linear combination of atomic orbitals (LCAO), the number of

basis functions is the same as the number of atoms in the molecule, one basis

function to each atom. Under the Huckel approximation that there is no electron

exchange or interaction between nonadjacent atoms, some of the coefficients of the

secular equations will be zero.

The secular equations can be written in matrix form

H11 � S11EÞ ðH12 � S12EÞ � � � ðH1n � S1nEÞ
ðH21 � S21EÞ � � �

� � � . .
.

ðHn1 � Sn1EÞ ðHnn � SnnEÞ

0
BBB@

1
CCCA

a1
a2

..

.

an

0
BBB@

1
CCCA ¼ 0 ð7-3Þ

where the ordered set of numbers faig is called an eigenvector. To Eq. (7-3) there is

a corresponding secular determinant

ðH11 � S11EÞ ðH12 � S12EÞ � � � ðH1n � S1nEÞ
ðH21 � S21EÞ � � �

� � � . .
.

ðHn1 � Sn1EÞ ðHnn � SnnEÞ

���������

���������
¼ 0 ð7-4Þ

which is set equal to zero to obtain nontrivial solutions to the linearly dependent

equation set (see section on the secular matrix in Chapter 6).

The optimization procedure is carried out to find the set of coefficients of the

eigenvector that minimizes the energy. These are the best coefficients for the chosen

linear combination of basis functions, best in the sense that the linear combination

of arbitrarily chosen basis functions with optimized coefficients best approximates

the molecular orbital (eigenvector) sought. Usually, some members of the basis set

of functions bear a closer resemblance to the ‘‘true’’ molecular orbital than others.

If basis function fk bears a closer resemblance to � than fkþ1 does, then ak > akþ1.
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Matrix Eq. (7-3) applies to only one of the eigenvectors, corresponding to only

one eigenvalue among En in the energy spectrum. We can arrange the En energies

in ascending order (ignoring degeneracies for simplicity), to get the diagonal

matrix

E1 0 � � � 0

0 E2 0

..

. . .
.

0

0 0 En

0
BBB@

1
CCCA ¼ E ð7-5Þ

corresponding to the matrix of eigenvectors we get by stacking n column vectors

next to each other in the order 1; 2; 3; . . . n so that the order of the eigenvalues

matches the order of the eigenvectors

a11 a12 � � � a1n
a21 a22 a2n

..

. . .
.

an�1n

an1 ann�1 ann

0
BBB@

1
CCCA ¼ A ð7-6Þ

We call this stacked matrix A. Now, Eq. (7-3) has been expanded to include all n

eigenvectors.

ðH11�S11EjÞ ðH12�S12EjÞ ��� ðH1n�S1nEjÞ
ðH21�S21EjÞ ���

��� . .
.

ðHn1�Sn1EjÞ ðHnn�SnnEjÞ

0
BBB@

1
CCCA

a11 a21 ��� a1n
a21 a22 a2n

..

. . .
.

an�1n

an1 ann�1 ann

0
BBB@

1
CCCA¼ 0

ð7-7Þ

Notice that matrix element aij has a subscript i that denotes the order of coefficients.

The subscript j specifies the vector that corresponds to the energy Ej. The

matrix

ðH11 � S11EjÞ ðH12 � S12EjÞ � � � ðH1n � S1nEjÞ
ðH21 � S21EjÞ � � �

� � � . .
.

ðHn1 � Sn1EjÞ ðHnn � SnnEjÞ

0
BBB@

1
CCCA ¼ H� SE ð7-8Þ

is the difference between two matrices because each of its elements is the difference

between two elements. We might be tempted to write

ðH� SEÞA ¼ 0 ð7-9Þ
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H11 H12 ��� H1n

H21 ���
��� . .

.

Hn1 Hnn

0
BBBB@

1
CCCCA

a11 a12 ��� a1n

a21 a22 a2n

..

. . .
.

an�1n

an1 ann�1 ann

0
BBBB@

1
CCCCA

�

S11 S12 ��� S1n
S21 ���
��� . .

.

Sn1 Snn

0
BBBB@

1
CCCCA

E1 0 ��� 0

0 E2 0

..

. . .
.

0

0 0 En

0
BBBB@

1
CCCCA

a11 a12 ��� a1n

a21 a22 a2n

..

. . .
.

an�1n

an1 ann�1 ann

0
BBBB@

1
CCCCA¼ 0 ð7-10Þ

or

HA� SEA ¼ 0 ð7-11Þ
HA ¼ SEA ð7-12Þ

but that would not be quite right because the order of matrices EA mixes

eigenvector components and eigenvalues so that they do not match. To see an

example, consider the products EA and AE, where

A ¼ a11 a12
a21 a22

� �
and E ¼ E1 0

0 E2

� �
ð7-13Þ

We choose 2� 2 matrices for simplicity, but we appreciate that the principle

applies in general. The (noncommutative) products are

EA ¼ E1 0

0 E2

� �
a11 a12
a21 a22

� �
¼ E1a11 E1a12

E2a21 E2a22

� �
ð7-14Þ

and

AE ¼ a11 a12
a21 a22

� �
E1 0

0 E2

� �
¼ a11E1 a12E2

a21E1 a22E2

� �
ð7-15Þ

Remembering that the second subscript, j, on the coefficient aij identifies the vector,

we can see that the second product above (7-15) matches eigenvalue E1 with the

eigenvector having coefficients fai1g and the eigenvalue E2 matches with the

eigenvector having coefficients fai2g. Conversely, product (7-14) mixes eigenvec-

tors and eigenvalues. We choose the unmixed order of multiplication. Our vector

equations become

HA� SAE ¼ 0 ð7-16Þ
HA ¼ SAE ð7-17Þ

written for the proper combination of eigenvectors and eigenvalues.
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As of right now, we know none of the matrices H, A, S, or E in Eq. (7-17) but we

do have some critical information about their form, including the integrals defined

as ð
p1p1 dt ¼ S11

from Eq. (6-32c) and

ð
p1p2 dt ¼

ð
p2p1 dt ¼ S12 ¼ S21

from Eq. (6-32d) in Chapter 6 or more generally asð
fifi dt ¼ Sii ð7-18Þ

and ð
fifj dt ¼

ð
fjfi dt ¼ Sij ¼ Sji ð7-19Þ

We also know that exact atomic orbitals are orthonormal, that is, Sii ¼ 1 and Sij ¼ 0

for an LCAO. If we assume that orthonormality is carried from an LCAO into the

molecular orbital, then S ¼ I and, from Eq. (7-17),

HA ¼ AE ð7-20Þ

If we can find a matrix A and its inverse A�1 such that, when we premultiply

each side of Eq. (7-20) by A�1,

A�1HA ¼ A�1AE ¼ E ð7-21Þ

we shall know that A is an orthogonal transform because we already know that E is

diagonal. We also know that E is the diagonal matrix of energy eigenvalues of the

similarity transform (7-21) (see the section on the transformation matrix in Chapter

2); therefore, the columns of A are ordered eivenvectors of E, that is, the molecular

orbital corresponding to Ej is

cj ¼
X
i

aijfi ð7-22Þ

It also follows that A�1 ¼ AT , which is a characteristic of similarity transforma-

tions, so A�1HA ¼ E implies that

ATHA ¼ E ð7-23Þ
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Equation (7-23) is a convenience because it is easier to find the transpose of a large

matrix than it is to find its inverse. It is also true that in Huckel theory, A is

symmetric, which means that it is equal to its own transpose, leading to the further

simplification

AHA ¼ E ð7-24Þ
If we can find A, we shall have found an orthogonal set of eigenvectors. It is

interesting and significant to note at this point that A is only one of many equally

valid orthogonal sets of eigenvectors.

The Matrix as Operator

An operator is a mathematical instruction. For example, the operator d=dx is the

instruction to differentiate once with respect to x. Matrices in general, and the

matrix R of Chapter 6 in particular, are operators. The matrix R is an instruction to

rotate a part of the operand matrix through a certain angle, y as in Eq. (6-62).

The product of matrix operators is an operator. For example, rotation through

90
, followed by another rotation through 90
 in the same direction and in the same

plane, is the same as one rotation through 180


R90
R90
 ¼ R180
 ð7-25Þ
Thus the Jacobi procedure, by making many rotations of the elements of the

operand matrix, ultimately arrives at the operator matrix that diagonalizes it.

Mathematically, we can imagine one operator matrix that would have diagonalized

the operand matrix Rt all in one step

Rt ¼ R1R2R3 . . .Rn ð7-26Þ
even though in practice, we took n steps to do it. The situation is analogous to

tuning a radio. We can imagine one perfect twist of the dial that would land right on

the station, but in practice, we make several little twists back and forth across the

proper tuning until we find the one we like.

The matrix A in Eq. (7-21) is comprised of orthogonal vectors. Orthogonal

vectors have a dot product of zero. The mutually perpendicular (and independent)

Cartesian coordinates of 3-space are orthogonal. An orthogonal n� n such as

matrix A may be thought of as n columns of n-element vectors that are mutually

perpendicular in an n-dimensional vector space.

The Huckel Coefficient Matrix

In Huckel theory, the H matrix consists of elements a� Ej and b

a� Ej b � � � 0

b a� Ej b � � �
� � � � � � � � � � � �
0 � � � b a� Ej

0
BB@

1
CCA

a1j
a2j

..

.

anj

0
BBB@

1
CCCA ð7-27Þ

HUCKEL MOLECULAR ORBITAL THEORY II: EIGENVECTORS 207



The matrix elements a� Ej and b are not variables in the minimization procedure;

they are constants of the secular equations with units of energy. Note that all

elements in the matrix and vector are real numbers. The vector aj is the set of

coefficients for one eigenfunction corresponding to one eigenvalue, Ej. From

Eq. (7-24),

AHA ¼ E ð7-28Þ

where the set of vectors comprising A is ordered so that A is a square, symmetric,

orthogonal matrix having the property that it is its own inverse and transpose.

But Eq. (7-28) is the same mathematical operation that we used to obtain the

diagonalized matrix of the eigenvalues,

RHR ¼ E ð7-29Þ

except that H was pre- and postmultiplied by the rotation matrix (see, with a slight

change in notation, the section on the Jacobi method in Chapter 6). Evidently, the

total rotation matrix Rt is an ordered matrix of eigenvectors. Thus if we keep track

of the iterative rotations necessary to arrive at a total rotation matrix Rt, we shall

have the matrix of coefficients A. Computationally, this is done by defining a unit

matrix I, and each time a partial rotation Ri is used to move matrix H toward E, we

operate on I with the same partial rotation matrix. When these iterations are

complete, the process that has brought about stepwise transformation of H into E

has also transformed I into A

R1R2R3 . . .Rn ¼ RtI ¼ A ð7-30Þ

Let us look at the Mathcad output for a Huckel matrix in more detail. We select

the matrix for ethylene to preserve simplicity.

Mathcad

H :¼ 0 1

1 0

� �

eigenvalsðHÞ ¼ �1

1

� �
eigenvecsðHÞ ¼ 0:707 0:707

�0:707 0:707

� �

eigenvecðH;�1Þ ¼ �0:707

0:707

� �
eigenvecðH; 1Þ ¼ 0:707

0:707

� �

In the Mathcad calculation of eigenvalues and eigenvectors of the Huckel

matrix for ethylene
�
0 1
1 0

�
, the eigenvalues are given in the order: upper followed

by lower. The matrix E for this order is

E ¼ �1 0

0 1

� �
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as given by the first output, eigenvals ðHÞ ¼ � �1
1

�
. The second output gives the

eigenvectors in the correct order, placing the eigenvector with the internal node on

the left so that it is associated with the �1 eigenvalue and leaving the 1 eigenvalue

to be associated with the eigenvector having no internal nodes. The lower two

queries

eigenvec ðH;�1Þ
and

eigenvec ðH; 1Þ

match the eigenvectors with the eigenvalues in Mathcad. They merely confirm this

association of eigenvectors with their appropriate eigenvalues, where the first entry

in parentheses is the matrix and the second is the eigenvalue.

There are two apparent discrepancies. The order of signs is not the same in the

two determinations of the eigenvector for the higher energy, but it doesn’t matter

which of the two equivalent carbon atoms has the negative coefficient; rotation of

the molecule through 180
 produces the opposite order of signs. Second, the lower
eigenvalue, the one with no internal nodes, is 1 while the higher eigenvalue having

one internal node is �1. This is correct because we are measuring a value of

bonding energy b, which is negative; hence the eigenvalue 1 leads to a negative

bonding energy and �1 leads to a positive antibonding energy. (The roots of the

secular determinant have the opposite signs, see also Problem 10 in Chapter 6.)

In a logical sequence, we might expect to try a solution for propene

CH2����CH��CH3

but under the Huckel approximations, there is no distinction between ethylene and

propene because the p electron system covers only the two p carbon atoms in the

molecule as written. Nothing outside the p system is included by the Huckel

method, so the known stabilizing influence of the methyl group is not found at this

level of calculation. We do, however, have a solution for the allyl system assumed

to have electrons delocalized over all three carbon atoms

C C C

which includes the free allyl radical and allyl ions.

Exercise 7-1

A. Find the eigenvalues and eigenvectors for the allyl model.

B. The rationale for replacing x in a simple Huckel matrix with 0 is that the Coulomb

integral does not have anything to do with bonding so one can measure b relative to any

reference point. Place some small whole numbers, say 2, 3, or 5, on each of the diagonals

in the allyl Huckel matrix and determine the eigenvalues. Measure the energies in units of

b above and below the selected reference energy. Are they the same as they are for x ¼ 0?
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Solution 7-1

A. The Huckel matrix for the allyl system was given in Eq. (6-58). Selecting x ¼ 0,

0 1 0

1 0 1

0 1 0

0
@

1
A ð7-31Þ

Arrange the coefficients of the eigenfunctions as the columns of a 3� 3 matrix with the

low-energy eigenvector on the left and the high-energy eigenvector on the right.

A. Mathcad

H :¼
0 1 0

1 0 1

0 1 0

0
B@

1
CA

eigenvals ðHÞ ¼
1:414

0

�1:414

0
B@

1
CA eigenvecs ðHÞ ¼

0:5 0:707 0:5

0:707 0 �0:707

0:5 �0:707 0:5

0
B@

1
CA

In this case Mathcad has already arranged the eigenvectors in their proper order as

can be verified by the following queries:

eigenvec ðH; 1:41Þ ¼
0:5

0:707

0:5

0
B@

1
CA eigenvec ðH; 0Þ ¼

�0:707

0

0:707

0
B@

1
CA

eigenvec ðH;�1:41Þ ¼
0:5

�0:707

0:5

0
B@

1
CA

B. Mathcad

HB :¼
2 1 0

1 2 1

0 1 2

0
B@

1
CA HB1 :¼

3 1 0

1 3 1

0 1 3

0
B@

1
CA

eigenvals ðHBÞ ¼
3:414

2

0:586

0
B@

1
CA eigenvals ðHB1Þ ¼

4:414

3

1:586

0
B@

1
CA

Bond energies relative to energy levels other than x ¼ 0 are invariant. The reference

point x ¼ 0 is an almost universal convention in simple Huckel theory, however,

and we shall continue to use it.
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Chemical Application: Charge Density

Once the eigenvectors have been found, there is much that can be done to transform

them into derived quantities that give us a better intuitive sense of how HMO

calculations relate to the physical properties of molecules. One of these quantities is

the charge density. The magnitude of the coefficient of an orbital aij at a carbon

atom Ci gives the relative amplitude of the wave function at that atom. The square

of the wave function is a probability function; hence, the square of the eigenvector

coefficient gives a relative probability of finding the electron within orbital j near

carbon atom i. This is the relative charge density, too, because a point in the

molecule at which there is a high probability of finding electrons is a point of large

negative charge density and a portion of the molecule at which electrons are not

likely to be found is positively charged relative to the rest of the molecule. Don’t

forget that, by definition, each molecular orbital includes all carbon atoms in the p
electron system. There may be one or two electrons in an orbital (N ¼ 1, N ¼ 2).

Unoccupied orbitals make, of course, no contribution to the charge density.

To obtain the total charge density qi at atom Ci, we must sum over all occupied

or partially occupied orbitals and subtract the result from 1.0, the p charge density

of the carbon atom alone

qi ¼ 1:0�
X

Na2i ð7-32Þ

The sum
P

Na2i is the total electron probability density at Ci and qi can be positive

or negative relative to the neutral situation.

This definition gives distinctly different charge distributions in, for example, the

positively charged ion, the free radical, and the negatively charged ion of the allyl

system. The low-energy orbital for the allyl model has coefficients given by the

leftmost column in the eigenvector matrix in solution 7-1, Part A.

C C CH

0.50 0.50
0.707

The positive ion, with two electrons in the lowest (bonding) orbital, has

q1 ¼ q3 ¼ 1:00� 2ð:50Þ2 ¼ :50

and

q2 ¼ 1:00� 2ð:707Þ2 ¼ 0:00

α −1.414 β

α
α +1.414 βe e
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where we recall that b is a negative energy. Thus the charge on the ion

CH3CH����CHþ is not localized at one end of the molecule but (within the Huckel

approximations) is concentrated equally at either end

C C C
0.50 0.00 0.50

δ + δ +

The allyl free radical with 3 electrons, 2 in the bonding orbital and 1 in the

nonbonding orbital, has

q1 ¼ q3 ¼ 1:00� 2ð:50Þ2 � ð:707Þ2 ¼ 0:00

q2 ¼ 1:00� 2ð:707Þ2 � ð0:00Þ2 ¼ 0:00

where the sign of an orbital drops out when we square it. Two electrons are in

the lowest-energy MO. They give the middle terms in the equations above. The

third term arises from the single nonbonding orbital of allyl, middle column

matrix A.

C C C

0.50

–0.50

0.00

This leads to

C C C
0.00 0.000.00

as expected from a neutral species.

The negatively charged ion, with 4 electrons, yields

C C C
0.00 0.500.50

− −

Its charge density distribution is like that of the cation (with sign reversal) because

the added electron goes into the nonbonded orbital with a node at the central carbon

atom. The probability of finding that electron precisely at the central carbon atom is

zero.

The antibonding orbital remains empty for the free radical and both of the ions.

Exercise 7-2

Write out the charge density diagrams for the positive ion, free radical, and negative ion

of the cyclopropyl system.
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Chemical Application: Dipole Moments

Knowing the charge density qi at each atom, one can calculate the dipole moment.

First, the charge density at each atom is represented as a vector of length qi from

some arbitrary origin in the direction of atom i. If the vector is collinear with a bond

and the origin is at an atom, the vector represents a bond dipole moment. All vectors

need not represent bond dipole moments because they need not all be collinear with

bonds. When all charge densities have been represented by vectors, the sum of the

vectors is the total dipole moment. By convention, vectors are usually drawn in the

positive direction and dipole moments point toward the negative (electron rich) end

of the dipole.

As an example, take the triply substituted carbon atom in methylene cyclopro-

pene as the origin for the charge densities in that molecule. The charge densities

at each atom are �0:478; 0:118; 0:180, and 0.180 according to the numbering in

Fig. 7-1. Let carbon atom 2 be taken as the origin. The direction of the bond vector

from carbon atom 2 to carbon 1 is reversed in the vector diagram because the charge

density at carbon 1 is negative. Taking 140 pm (1 pm¼ 10�12 m) as a reasonable

average value for the C��C bond length, the vector diagram in Fig. 7-1 shows that

the sum of charge vectors is 112 C pm (coulomb picometers). Multiplying by

4:77� 10�2 to convert to units of debyes, one obtains 5.3 D with the negative end

of the dipole at the methylene carbon. This is certainly too large. The true value is

probably between 1 and 2 D. Nevertheless, an order of magnitude has been

140(.180)

140(.180)

140(.487)

Resultant = 2(140(.180)cos 30) + 140(.487) = 43.6 + 68.2 = 112 C pm

Dipole moment = 5.3 Debye 

C1 C2

C3–.487 .118
.180

C4
.180

140 pm

Figure 7-1 Dipole Moment Vectors for Methylenecyclopropene. By convention, the dipole

moment arrow is drawn in the negative direction.
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calculated and the direction of the dipole is correct. We shall treat more refined

dipole moment calculations in later chapters.

Chemical Application: Bond Orders

Just as it is possible to calculate the electron probability densities at carbon atoms in

a p system, so it is possible to calculate the probability densities between atoms.

These calculations bear a rough quantitative relationship to the chemical bonds

connecting atoms. Bond orders have been correlated with bond lengths and

vibrational force constants. Because we are calculating only p electron densities,

the results relate only to p bonds. As the reader may anticipate from the discussion to

this point, bonds are not localized between atom pairs in MO theory but are

delocalized over the entire p system. One can use Mathcad, either of the MOBAS

programs, or the simple Huckel molecular orbital program SHMO (see section on

programs below) to obtain the eigenfunctions and eigenvalues for butadiene shown in

Fig. 7-2.

The definition of bond order is

Pjk ¼
X

Naijaik ð7-33Þ

where the summation is over all occupied orbitals connecting atoms Cj and Ck, N is

the number of electrons in a single orbital (1 or 2), and aij and aik are the

coefficients of atoms Cj and Ck . The symbol Pjk is given the name bond order; it is

a measure of the probability of finding a p electron between atoms Cj and Ck. If Pjk

is large relative to the other bond orders, we anticipate a strong bond. In later

α

α−1.62β

α−0.62β

α+0.62β

α+1.62βπ

π∗

π∗

π

H :¼
0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

0
BB@

1
CCA

eigenvals ðHÞ ¼
0:618
1:618
�0:618
�1:618

0
BB@

1
CCA eigenveces ðHÞ ¼

0:602 0:372 0:602 �0:372
0:372 0:602 �0:372 0:602
�0:372 0:602 �0:372 �0:602
�0:602 0:372 0:602 0:372

0
BB@

1
CCA

Figure 7-2 Energy-Level Spectrum for 1,3-Butadiene.
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discussions, the term population will also be used for this symbol to denote the

relative expected electron density.

For buta-1,3-diene, the order of the 1,2 bond is

Pjk ¼ P12 ¼ 2ð0:372Þð0:602Þ þ 2ð0:602Þð0:372Þ ¼ 0:896

(Note that the order of internal nodes in the eigenvectors in Fig. 7-2 is 1, 0, 2, and 3

from left to right.)

In the case of the p bond of ethylene, or any isolated p bond, the bond order is

1.0. We may take the value 0.896 for the bond order at the 1,2 position as an

indication that the 1,2 p bond in buta-1,3-diene is not exactly the same as the p bond

in ethylene ðP12 ¼ 1:00Þ but is somewhat diminished by delocalization of electrons

over the molecular orbital system. Adding the single s bond to this result, the

‘‘double bond’’ in 1,3-butadiene is really a ‘‘1.896 bond.’’ This delocalization of

electrons away from the isolated double bond in the 1,2 position implies an

augmentation of the bond order in the 2,3 position; it ought to be more than a

single bond by the electron probability density gained from the terminal bonds. The

summation of bond orders is not necessarily the same as the number of bonds. For

example, in Huckel theory, buta-1,3-diene with 3 s and 2 p bonds has a total bond

order that is 5.23.

Exercise 7-3

Calculate the bond orders for the 2,3 and 3,4 bonds in butadiene. Is the 2,3 bond

augmented at the expense of the terminal bonds?

Solution 7-3

C C C
1.45 1.891.89

C

Yes

Chemical Application: Delocalization Energy

We have already obtained solutions for localized ground-state ethylene leading to

the energy E ¼ 2aþ 2b. In looking at allyl, the next more complicated case, we can

regard it as an isolated double bond between two sp2 carbons to which an sp3

carbon is attached,

C����C��C

or, in valence bond terminology, a resonance hybrid

C����C��C $ C��C����C
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In molecular orbital terminology, the hybrid might be represented by one structure

with delocalized p electrons spread over the sigma-bonded framework

C C C

These latter two descriptions are equivalent. Chemical evidence leads us to accept

either the valence bond or the molecular orbital representation as preferable to the

localized representation. One can calculate the eigenvalue (energy) of the delocal-

ized system and the localized system. Taking a ¼ 0 as a reference point, the

localized double bond has an energy of 2b but the delocalized model has

E ¼ 2:828b because it has 2 electrons in the bonding orbital at 1.414b (Exercise

7-1). The difference between the two, 0.828b, is the delocalization energy of allyl.

This is the Huckel molecular orbital equivalent of the experimentally observed

stabilization energy of a double bond by a methyl group.

Exercise 7- 4

Write the secular matrix for localized buta-1,3-diene

CH2����CHCH����CH2

Solution 7-4

x 1 0 0

1 x 0 0

0 0 x 1

0 0 1 x

0
BB@

1
CCA ð7-34Þ

The matrix is the 1,3-butadiene matrix with the ones representing the atoms C2 and C3

omitted to reflect the localized nature of the two terminal p bonds. Another way of

looking at this matrix is to regard it as representing two ethylene (localized) p bonds in

the same linear molecule.

Exercise 7-5

Calculate the delocalization energies of the positive ion, free radical, and negative ion of

the allyl model.

Solution 7-5

The energy of the isolated double bond is 2aþ 2b. Both ions and the free radical of the

allyl system have eigenvalue energies of 2aþ 2:828b. The difference is 0.828b in all

three cases; hence, the delocalization energies are all 0.828b. The reason the energy is not
changed by adding an electron to the allyl positive ion to obtain the free radical is that the

electron goes into a nonbonding orbital, which neither augments nor diminishes the

216 COMPUTATIONAL CHEMISTRY USING THE PC



energy. The same is true if two electrons are added in to obtain the negative ion. Use of

the term allyl model or allyl system is illustrated by this exercise. The positive ion, the

negative ion, the neutral molecule, and the free radical are all represented by the same

energy spectrum and the same set of eigenvectors. In the Huckel representation, they

differ only in the number of electrons.

Chemical Application: The Free Valency Index

The free valency index Fr is a measure of reactivity, especially of free radicals

Fr ¼ 1:732�
X

Pr ð7-35Þ

where
P

Pr is the sum of bond orders between atom Cr and all atoms to which it is

connected. For example, the free valency index for the terminal carbon atoms in

1,3-butadiene is

F1 ¼ F4 ¼ 1:732� 0:894 ¼ 0:838

Within the predictive capabilities of the models, reactivity is given by Fr. The larger

Fr, the more reactive the molecule (or ion or radical). Note that the terminal carbon

atoms in buta-1,3-diene are predicted by Huckel theory to be slightly more reactive

than the carbon atoms in ethylene. Qualitative correlation with experience is seen

for some alkenes and free radicals in Fig. 7-3.

Chemical Application: Resonance (Stabilization) Energies

The term resonance energy has been used in several ways in the literature, but it is

generally used to mean the difference between an experimentally determined

energy of some relatively complicated molecule and the experimental energy

CH2 CH2

0.73
CH2

1.04

0.23

0.92

CH2

CH2

1.73

CH3

Figure 7-3 Free Valency Indices of Alkenes and Free Radicals.
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expected by analogy to some relatively simple molecule. For example, the enthalpy

of hydrogenation of but-1-ene is �127 kJ mol�1.

CH2����CHCH2CH3 þ H2 ! CH3CH2CH2CH3

from which we can predict the value of 2ð�127Þ ¼ �254 kJ mol�1 for hydro-

genation of buta-1,3-diene

CH2����CHCH����CH2 þ H2 ! CH3CH2CH2CH3

The actual value of the enthalpy of hydrogenation of 1,3-butadiene is �243 kJ

mol�1. Both are hydrogenated to the same product, n-butane; hence the enthalpy

diagram (Fig. 7-4) shows that buta-1,3-diene is 11 kJ mol�1. lower in enthalpy than

it ‘‘ought’’ to be on the basis of the reference standard, but-1-ene.

The simple molecule (from a p electronic point of view), but-1-ene, is the

reference state against which we compare the relatively complicated molecule,

buta-1,3-diene. Changing the reference standard to ethylene, however, gives a

different value for the resonance energy. Ethylene has an enthalpy of hydrogena-

tion �hydH
298 of �136.0 kJ mol�1, which leads to 2ð�136Þ ¼ �272 kJ mol�1 as

the anticipated �hydH
298 of buta-1,3-diene. Based on this standard, the resonance

energy is 272� 243 ¼ 29 kJ mol�1. Because different choices of the reference state

lead to different values of the resonance energy, historically this has led to different

definitions of resonance energy as well (see, e.g., Pauling, 1960, Dewar, 1969).

The resonance stabilization of benzene and benzenoid compounds is especially

strong. Benzene, which is much less reactive (more stable) than the three double

bonds of its ‘‘Kekule structure’’ would lead us to expect, is said to be

aromatic.

buta-1,3-diene

(anticipated)

buta-1,3-diene

(experimental)

n-butane

but-1-ene

stabilization

(11 kJ–1 mol)

Figure 7-4 Enthalpy Level Diagram for But-1-ene and Buta-1,3-diene. Arrows point down

because �hydH
298 for hydrogenation is negative (exothermic).
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LIBRARY PROJECT 7-1 j The History of

Resonance and Aromaticity

Write an essay of approximately 2000 words on the history and the various

definitions of the concept of resonance, resonance energy, and aromaticity.

Valence-bond theory explains the stabilization of systems of conjugated double

bonds (like those in buta-1,3-diene) with resonance structures that are analogous to

the resonating oscillators in the section on normal modes of motion in Chapter 5

(see also Wheland, 1955). This is the origin of the term resonance stabilization. The

analogy must not be carried too far, however, because energy does not pass from

one resonance structure to another as it does from one harmonic oscillator to another.

Resonance extremes are hypothetical structures used to describe the unique real

molecule. The difference between the enthalpy of hydrogenation anticipated on the

basis of a single hypothetical reference structure and the experimental enthalpy of

hydrogenation of the real molecule is one definition of the theoretical resonance

energy.

We have used the term resonance energy in the heading of this section largely to

connect with the older literature. Because of the different ways resonance energy

can be defined and the somewhat contentious literature surrounding the term, the

more general term stabilization energy has come into the molecular orbital

literature and is preferable. In this somewhat less restrictive terminology, buta-

1,3-diene is said to be stabilized relative to some reference standard. Just as

molecules can be stabilized by electronic interactions, they can also be destabilized

and a destabilization energy can be measured relative, once again, to an arbitrary

standard state.

Exercise 7-6

Turner (1957) measured �hydH
298 of cyclohexene and found it to be �113 kJ mol�1.

Using cyclohexene as the reference standard, calculate the resonance energies of

cyclohexa-1,3-diene (�hydH
298 ¼ �224 kJ mol�1), cyclohexa-1,4-diene (�hydH

298 ¼
�225 kJ mol�1) and benzene (�hydH

298 ¼ �216 kJ mol�1). Comment on these results.

The value for benzene (Kistiakowsky, 1938) has been corrected to conform with the

experimental conditions of Turner’s results.

Extended Huckel Theory---Wheland’s Method

One restriction imposed by Huckel theory that is rather easy to release is that of

zero overlap for nearest-neighbor interactions. One can retain a� E as the diagonal

elements in the secular matrix and replace b by b� EjS as nearest-neighbor

elements where S is the overlap integral. Now,

a� Ej b� EjS � � � 0

b� EjS a� Ej b� EjS � � �
� � � � � � � � � � � �
0 � � � b� EjS a� Ej

0
BB@

1
CCA ð7-36Þ

is the secular matrix.

HUCKEL MOLECULAR ORBITAL THEORY II: EIGENVECTORS 219



By analogy to the substitution x ¼ a� E=b in the section on the secular matrix

in Chapter 6, we can make the substitution

x ¼ a� Ej

b� EjS
ð7-37Þ

which causes the secular matrix to take the same form that it did in the simple

Huckel theory, for example,

x 1

1 x

� �
ð6-44Þ

for ethylene. From the definition of x,

Ej ¼ a� xb
1� xS

ð7-38Þ

Millikan has shown that the overlap integral for hydrogen-like p orbitals in linear

hydrocarbons is about 0.27 (Millikan, 1949).

Exercise 7-7

Prove Eq. (7-38) from the definition of x.

Exercise 7-8

What is the energy separation E2 � E1 of the bonding and antibonding orbitals in

ethylene, assuming that the overlap integral S is 0.27?

Solution 7-8

The eigenfunctions are �1 as in the simple Huckel calculation for ethylene

E1 ¼ aþ b
1:27

E2 ¼ a� b
0:73

where, by convention, we have chosen E1 < E2 . If we take

b ¼ �1; and a ¼ 0

this leads to

Ej ¼ �0:79; 1:37 ð j ¼ 1; 2Þ

The separation is 2.16b, which, considering all the approximations already made, is not

greatly different from the separation we found ignoring overlap.
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Extended Huckel Theory---Hoffman’s EHT Method

Hoffman’s extended Huckel theory, EHT (Hoffman, 1963), includes all bonding

orbitals in the secular matrix rather than just all p bonding orbitals. This inclusion

increases the complexity of the calculations so that they are not practical without a

computer. The basis set is a linear combination that includes only valence orbitals

cj ¼
X

aijfi ð7-39Þ

but even for ethylene, this leads to a 12� 12 secular matrix because there are 4

valence electrons on each of 2 carbon atoms and 1 on each of the 4 hydrogens.

The orbitals used for methane, for example, are four 1s Slater orbitals of

hydrogen and one 2s and three 2p Slater orbitals of carbon, leading to an 8� 8

secular matrix. Slater orbitals are systematic approximations to atomic orbitals that

are widely used in computer applications. We will investigate Slater orbitals in

more detail in later chapters.

We fill the secular matrix H with elements Hij over the entire set of valence

orbitals. The diagonal elements are

�13.6 1s Hydrogen

Hii ¼ �21:4 2s Carbon

�11.4 2p Carbon

which are the atomic ionization energies in electron volts (eV). The EHT energies

are negative as always for bound states relative to an arbitrary zero of energy

defined as the energy of the unbound state. (See Computer Project 3-3 for

determination of the ionization energy of hydrogen.)

Off-diagonals are given by

Hij ¼ 0:88ðHii þ HjjÞSij

where Sij is, once again, the overlap integral. The off-diagonal Hij is the arithmetic

mean of Hii and Hjj modified by the overlap integral and multiplied by another

empirical factor, 1:75=2 ¼ 0:88. The Sij are obtained from the Slater orbitals, which

closely resemble atomic orbitals in shape. The sum of the occupied EHT orbital

energies times 2 (for 2 electrons per orbital in the nondegenerate ground state) is

the total energy of the valence electrons in the molecule relative to a reference

state of the completely ionized core atoms. The core of C is its nucleus plus its

1s electrons.

In the process of diagonalization, the trace of the EHT matrix is invariant but the

spacing between energy levels changes. Changes in spacing are brought about by

the presence of nonzero off-diagonal matrix elements. In methane, for example, the

energy of the lowest 4 EHT orbitals gets lower and the energy of the highest 4

orbitals goes up by an equal amount.
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Exercise 7-9

Sum Hii for the EHT matrix of methane and so obtain the trace of the EHT matrix.

Solution 7-9

X
HiiðC; 4HÞ ¼ �110 eV

After diagonalization of the EHT matrix, the lowest 4 orbitals have an energy sum of

about �70 eV. The electronic energy for these doubly occupied orbitals is 2ð�70Þ ¼
�140 eV. The energy gain of the molecule relative to its atoms is �140� ð�110Þ ¼
�30 eV ¼ �690 kcal mol�1 (1 eV ffi 23 kcal mol�1); therefore, the molecule is stable

relative to its atoms. We can envision an energy cycle with three steps (Fig. 7-5):

A. Completely independent core positive ions and electrons come together from

infinite separation to form 1 C atom and 4 H atoms. One electron per atomic orbital brings

about a total energy change of �110 eV.

B. Completely independent core positive ions and electrons come together to form

1 CH4 molecule. Two electrons per occupied bonding orbital bring about an energy

change of about �140 eV.

C. The energy of formation of CH4 in the gaseous state from the gaseous atoms is

found from the difference

CðgÞ þ 4HðgÞ ! CH4ðgÞ

By this scheme, the energy of formation of methane from its gaseous independent

atoms is about �30 eV ¼ �690 kcal mol�1. This is not the thermodynamic energy of

formation in the standard state as it is usually defined but is closely related to it. The

energy of formation defined in this way is the reverse of the energy of atomization of

methane. Results of molecular orbital calculations are often reported as atomization

energies, particularly in the literature before 1990. The EHT value is quantitatively wrong

(the experimental value is �390 kcal mol�1), but the method can be indefinitely improved

by self-consistent field iteration (Chapter 8) and reparameterization.

The Sij are geometry dependent; hence, one can try various molecular geometries and

select the structure that gives the lowest energy, thereby obtaining the best geometry from

among the alternatives tried. We have already seen this procedure used in molecular

mechanics. It is a concept that will be used at a sophisticated level in the remaining

chapters of this book. Hoffman makes the point, richly confirmed by subsequent studies,

–140 eV–110 eV

–30 eV

Core ions

Methane

Core atoms

Figure 7-5 EHT Energy Diagram for Methane.
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that accurate molecular geometries are easier to determine, and therefore more accurate,

than energy or other molecular properties, particularly those dependent upon charge

density. As in simple Huckel calculations, but in contrast to the self-consistent field

calculations to be described in Chapter 8, there is only one EHT matrix diagonalization.

Applications of EHT include calculation of the rotational barrier in ethane and of the

chair-boat conformational energies in cyclohexane. EHT has been largely supplanted by

ab initio and semiempirical calculations, but the method deserves our attention because it

introduces Slater orbitals and use of full Huckel matrices as distinct from Huckel matrices

that have been simplified by setting most of the elements equal to zero. In his original

paper, Hoffman applied his extended Huckel theory to nonplanar molecules and to

molecules more diverse and larger than those customarily treated by simple Huckel

theory. EHT is the first truly computational molecular orbital method for large molecules,

all of the results in the original paper having been obtained on an IBM 7090.

The Programs

MOBAS was written by the author (Rogers, 1983) in BASIC to illustrate matrix

inversion in molecular orbital calculations. It is modeled after a program in

FORTRAN II given by Dickson (Dickson, 1968).

SHMO is a simple Huckel MO program in FORTRAN that functions much as

MOBAS does and is also based on the Dickson program. The SHMO source code

must be compiled. Compiled SHMO is in executable code (.exe). Run SHMO from

the system level (do not go into BASIC) with the single command

>SHMO

SHMO responds with a series of prompts. The input format is similar to MOBAS.

Matrix elements are entered

row number, column number, element, 0

except for the last entry, which ends in 99. After receiving the complete input,

SHMO prints out the eigenvalues and eigenfunctions for the problem presented to

it. Note that data are input to the program from the keyboard and not built into it as

in MOBAS.

The output of SHMO is interrupted by a PAUSE statement. This prevents

scrolling through the entire output at the end of a calculation. At the PAUSE prompt

in the output, hit ENTER to see the first eigenvalue and eigenvector. Hit ENTER

again for the second eigenvalue and eigenvector, and so on. To read the program

page by page, enter TYPE SHMO.FOR | MORE. To modify SHMO, enter EDIT

SHMO.FOR. All of these commands are executed from the system level, at the

prompt

>

If you wish to modify SHMO or run it on a machine that is different from

the machine that it was compiled on, you may have to recompile. Compiling

FORTRAN programs is outside the scope of this book but is described in detail in
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the manuals available with any commercial compiler. SHMO was compiled with

IBM FORTRAN Compiler 2.0 and also with Microsoft FORTRAN Professional

Development System 5.1 (1991).

HMO is a more elaborate Huckel MO program than either MOBAS or SHMO. It

calculates charge densities, free valency indices, and bond orders. It is written in

FORTRAN and is a modification of a program by Greenwood (Greenwood, 1972).

HMO must also be recompiled for different machines. The same two compilers

work for HMO as for SHMO. The output of HMO is more compact than that of

SHMO. For molecules of eight carbon atoms or fewer, the eigenvalues and

eigenvectors fit onto the first screen. After responding to a PAUSE prompt, the

total p electron energy, charge densities, free valency indices at each carbon atom,

and bond orders are seen on the second screen. As presently formatted, HMO is

limited to molecules of six carbon atoms or fewer to make the output compact, but

this restriction can be released by changing the FORMAT statements and recompil-

ing. A partial output for buta-1,3-diene is given in Fig. 7-6.

The total p electron energy is the sum of occupied orbital energies multiplied by

two if, as is usually the case, the orbital is doubly occupied. The charge densities

and free valency indices were treated in separate sections above. The bond order

output should be read as a lower triangular semimatrix. The bond order semimatrix

for the butadiene output is shown in Fig. 7-7.

The principal diagonal of the HMO output matrix is the p electron probability

density at atom j,
P

Na2ij, where the summation is over all occupied orbitals. This

can be thought of as the bond order of atom j with itself
P

Naijaij. The electronic

charge times the electron probability density is the charge density at atom j, relative

to a charge of 1.000 contributed by the 2p electron of the carbon atom, .0000 in the

HMO output for buta-1,3-diene. The free valency index follows from Eq. (7-35).

TOTAL PI-ELECTRON ENERGY=  -4.4721
Charge densities
     .0000   .0000   .0000   .0000
Free valency indices
     .8376   .3904   .3904   .8376
Bond order matrix
    1.0000   .8944  1.0000   .0000   .4472  1.0000  -.4472   .0000
     .8944  1.0000
Stop -  Program terminated.

Figure 7-6 HMO output for Buta-1,3-diene (second screen, condensed).

1.0000

.8944  1.0000

.0000   .4472  1.0000

-.4472  .0000   .8944  1.0000
Figure 7-7 The Bond Order Semimatrix for

Buta-1,3-diene.
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The full bond order matrix is a symmetric tridiagonal matrix (Chapter 2). It is

symmetric because the bond order Pjk ¼
P

Naijaik is the same as the bond order

Pkj ¼
P

Naikaij. Elements off the tridiagonal (–.4472 in the butadiene example) are

artifacts of the minimization and should be disregarded. The full bond order matrix

for butadiene is

1:0000 0:8944 0 0

0:8944 1:0000 0:4472 0

0 0:4472 1:0000 0:8944
0 0 0:8944 1:0000

0
BB@

1
CCA

There is slight disagreement (about 0.001b) between the bond orders in this output

and those from Mathcad (see section on bond orders above) because of rounding

error, different algorithms being used to determine the eigenvectors, and so on. In

an approximate method such as this one, errors of this magnitude are negligible,

although we shall soon be carrying out calculations where accuracy to the fifth digit

beyond the decimal point is critical.

COMPUTER PROJECT 7-1 j Larger Molecules:

Calculations using SHMO

SHMO, being in compiled FORTRAN, is much faster than MOBAS, which is

written in standard interpreted BASIC. Solve the Huckel matrix for the hexatriene

model using MOBAS and again using SHMO. Record the run time for this problem

with each program. If you have a fairly new machine, this part of the project may

not work. Both calculations may be so fast that you will not see the difference.

From among the numerous problems presented up to this point, find one that is

sufficiently demanding of computer iterations that you can tell the difference

between the run times for interpreted BASIC and compiled FORTRAN. You will

probably have to write your own programs in both BASIC and FORTRAN. Keep

them as simple as possible. Coding and compiling FORTRAN programs is one of

those things that isn’t much fun but should be done at least once or twice for the

experience.

Use SHMO to obtain the energy spectrum for the models methylenepentadiene,

bicyclohexatriene, and styrene. Draw all three energy level diagrams. Are there

degeneracies for these molecules?

Polarographic oxidation entails removing one or more electrons from a molecule

M undergoing oxidation at a mercury or similar electrode

M ! Mþ þ e� ðoxidation of MÞ

HUCKEL MOLECULAR ORBITAL THEORY II: EIGENVECTORS 225



The more tightly held an electron is, the more difficult it is to remove, hence the

higher the electrode potential necessary to remove it. Make the reasonable

hypothesis that the electron removed in a one-electron oxidation comes from

the highest occupied orbital, HOMO. Using SHMO, determine the HOMO for

benzene, biphenyl, and naphthalene.

Note that all of the occupied orbitals in these molecules have negative energies, that

is, they are below a by an energy measured in units of b. Electrons with the most

negative b are most strongly bound and hardest to remove from the molecule. The

molecule with the least negative HOMO has electrons that are highest in the energy

spectra of these three relatively complicated molecules. These electrons are most

easilywithdrawn; hence, themoleculewith the least negativeb ismost easily oxidized.

Arrange the three compounds in order of increasing oxidation potential. Plot the

experimental value of oxidation potential, 1.3, 1.5, and 2.0 V for naphthalene,

biphenyl, and benzene, respectively, vs. b for the HOMO of each compound.

COMPUTER PROJECT 7-2 j Dipole Moments

Using Program HMO, calculate the dipole moment of methylenecyclopropene by

the HMO method. The program gives total charge densities at each carbon atom,

making the calculation of dipole moments essentially a geometric problem. The

single charge of the carbon atom must be subtracted from the total charge density to

obtain the charge density used in the dipole moment calculation, that is, a computer

output at carbon 1 of 1.5 leads to a p charge density at that atom of 0.5. Calculate

the dipole moment of fulvene by the HMO method. Assume, for the calculation,

that the endocyclic double bonds are parallel as in the diagram below and that the

angle at carbon atom 2 is the same as in methylene-cyclopropene. These assump-

tions are not true, but we will be able to arrive at more accurate geometries and

dipole moments by semiempirical and ab initio calculations. In which direction is

the dipole moment of methylenecyclopropene? In which direction is the dipole

moment of fulvene?

methylenecyclopropene fulvene

Program HMO gives you the option of modifying one or more of the elements

input to the semimatrix. Calculate the charge densities of cyclopropeneone by

entering the semimatrix

2

1 0

0 1 0

0 1 1 0

0
BB@

1
CCA
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and selecting the modification option by typing 01 at the prompt: Enter number of

elements to be modified I2 format. Respond to the prompt: Enter row (I2), column

(I2), and new element (F6.3) by typing

02011.414

This leads to the semimatrix

2

1:414 0

0 1 0

0 1 1 0

0
BB@

1
CCA

for cyclopropenone. Program HMO automatically loads the full matrix from the

semimatrix because Huckel molecular orbital matrices are always symmetrical;

hence, the program ‘‘knows’’ what the elements are above the principal diagonal.

Calculate the dipole moment of cyclopropenone.

Use the same method to calculate the dipole moment of cyclopentadienone.

Assume, for the calculation, that the endocyclic double bonds are parallel and the

angle at carbon 2 is the same as in cyclopropenone.

O O

cyclopropenone cyclopentadienone

There is a substantial difference in dipole moments between methylenecyclopro-

pene and cyclopropenone, but the difference between fulvene and cyclopentadie-

none is much smaller. Explain.

COMPUTER PROJECT 7-3 j Conservation of Orbital Symmetry

Conservation of orbital symmetry is a general principle that requires orbitals of the

same phase (sign) to match up in a chemical reaction. For example, if terminal

orbitals are to combine with one another in a cyclization reaction as in pattern A,

they must rotate in the same direction (conrotatory overlap), but if they combine

according to pattern B, they must rotate in opposite directions (disrotatory). In each

case, rotation takes place so that overlap is between lobes of the p orbitals that are

of the same sign.

+ −

− +
+ +− −

Pattern A

− −

+ +

+ +− −

Pattern B
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For this computer project, obtain the orbitals of butadiene and predict whether

the cyclization of butadiene to cyclobutene is conrotatory or disrotatory.

Perform the same calculation for 1,3,5-hexatriene.

Conrotatory and disrotatory concerted reactions can often be distinguished by

chemical means. For example, using the results of the previous calculation, predict

whether the cyclizations of hexa-2,4-diene will lead to cis or trans dimethylcyclo-

butene

CH3

CH3

CH3

CH3

Perform the same calculation for cyclization of 2,4,6-octatriene. Which isomer of

dimethylcyclohexadiene is formed?

CH3

CH3

CH3

CH3

COMPUTER PROJECT 7-4 j Pyridine

Heteroatoms have an electron density that is different from carbon. From an HMO

point of view, the coefficient of the heteroatom in the secular matrix is larger or

smaller according to whether the heteroatom is electronegative or electropositive

relative to carbon. Empirical parameters may be used to augment or diminish the

wave function through its coefficients, ai at the heteroatom j. The wave function

(hence c2 and the electron probability density) can be augmented at the heteroatom

only, as in the problem on pyrrole in Chapter 6, or for both the heteroatom and the

carbon atoms immediately adjacent to it. In one approximation (Pilar, 1990), the

input matrix for pyridine is

xþ 0:5 1:2 0 0 0 1:2
1:2 x 1 0 0 0

0 1 x 1 0 0

0 0 1 x 1 0

0 0 0 1 x 1

1:2 0 0 0 1 x

0
BBBBBB@

1
CCCCCCA
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where the modifications a0r ¼ aþ hrb and b0rs ¼ krsb ¼ krs have been made to the

secular matrix of benzene to account for the substitution of one nitrogen atom at the

1,1 position for one carbon atom. The parameters hr and krs for modifying a and b
are based on electronegativity differences from carbon but are not particularly

transferable to other problems. Transferability failure is one of the reasons that

HMO methods have been largely abandoned in favor of methods described in

Chapters 8�10. A thorough understanding of HMO methods is, however, a useful

stepping stone to research-level ab initio and semiempirical molecular orbital

calculations.

Procedure. Subtract xI from the input matrix above. Load the resulting upper

semimatrix into MOBAS. The first element is 1,1,0.5,0. Recall that MOBAS

requires entry of only the nonzero elements in the upper semimatrix. Obtain the

eigenvalues and eigenvectors.

Repeat the procedure using HMO. HMO requires entry of the entire lower

semimatrix, including the diagonal and all zero elements. Because the matrix

element format is I1, only one symbol can be entered for each element. The

numbers 0.5 and 1.2 cannot be entered in this format; instead enter 1, which will be

modified later. The initial unmodified input for pyridine is the same as that for

benzene, 010010001000010100010; hence, we can make a trial run on benzene to

see if everything is working properly.

Run benzene using HMO. Write out the full bond order matrix, entering zero for

any element off the tridiagonal. What is the bond order of benzene? Is there any

Kekule-type alternation in this model?

To prepare the input matrix for pyridine, respond to the prompt asking how

many elements should be modified with 03. Follow this with 01010.5 to change the

1,1 element to 0.5. Continue for the remaining two element changes. When the last

element has been properly modified, the eigenvalues and eigenfunctions are

calculated. Rerun to make sure you get the same answer.

Write out the tridiagonal matrix of charge densities (principal diagonal) and

bond orders (upper and lower off-diagonals). What is the most active site in

pyridine acting as a base? How might Cu2þ complex with pyridine? Is there a

theory under which this might be regarded as an acid-base reaction? Is there much

charge alternation in the pyridine ring? Is there much bond alternation in the

pyridine ring?

PROBLEMS

1. Find the determinant of

cos y sin y
sin y �cos y

� �
2. Given the modified Huckel matrix and the orthogonal transform in

Exercise 7-1, carry out the multiplication

AXA

and identify the product you get.
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3. Is the allyl coefficient matrix orthonormal?

4. Write out the coefficients of the butadienyl system, as they are produced by

program MOBAS, in matrix form. Is the matrix symmetric? If not, can it be

made symmetric by exchanging rows only?

5. Determine the eigenvectors and eigenvalues for methylenecyclobutene.

6. Determine the delocalization energy and dipole moment for methylenecyclo-

butene.

7. Draw charge density diagrams for the positive ion, free radical, and negative

ion of the butadienyl system.

8. Draw bond order and free valency index diagrams for the butadienyl system.

9. Write a ‘‘counter’’ into program MOBAS to determine how many iterations are

executed in solving for the allyl system. The number is not the same for all

computers or operating systems. Change the convergence criterion (statement

300) to several different values and determine the number of iterations for

each.

10. Refer to Computer Project 7-2. Calculate b in units of electron volts using

Wheland’s extension of Huckel molecular orbital theory.

11. Print Program MOBAS. Identify the statements in the program that generate

the eigenvector matrix A by performing the same rotation operations on I that

it performs on the input matrix to generate the eigenvalue matrix.

12. Determine the dipole moment of cyclobutenone.

13. Assuming a ð2sÞ2ð2pÞ2 electron distribution for the carbon atoms, calculate

the energy of formation of ethylene from the gaseous atoms.

14. Spectroscopically determined values of b vary, but they are usually around

�2.4 eV. In the section on resonance stabilization, we saw that thermodynamic

measurements of the total resonance stabilization of butadiene yield 11 and

29 kJ mol�1 according to the reference standard chosen. Calculate the

delocalization energy of buta-1,3-diene in units of b. Determine two values

for the ‘‘size’’ of the energy unit b from the thermochemical estimates given.

Do these agree well or poorly with the spectroscopic values?

15. The delocalization energy of benzene is 2b (verify this). From information in

Exercise 7-6 calculate yet another value for the ‘‘size’’ of the unit b based on

the thermodynamic values of the enthalpy of formation of benzene. Does this

value agree with the thermodynamic values in Problem 14? Does it agree with

the spectroscopic value?
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C H A P T E R

8
Self-Consistent Fields

Because of its severe approximations, in using the Huckel method (1932) one

ignores most of the real problems of molecular orbital theory. This is not because

Huckel, a first-rate mathematician, did not see them clearly; they were simply

beyond the power of primitive mechanical calculators of his day. Huckel theory

provided the foundation and stimulus for a generation’s research, most notably in

organic chemistry. Then, about 1960, digital computers became widely available to

the scientific community.

Beyond Huckel Theory

To advance beyond Huckel’s method, we look again at the problem of calculating

elements of the secular matrix. This is the problem Huckel simply swept away by

setting the diagonal elements a equal to zero (as a reference point) and giving the

basic energy unit the simplest possible definition: b ¼ 1 for adjacent carbon atoms

and b ¼ 0 for nonadjacent carbons in alternant hydrocarbons. Huckel molecular

orbital energies come out in units of b, but an indication of the inadequacy of the

Huckel method is that evaluations of b for different molecular systems do not give

the same results (Problems 15 and 16 in Chapter 7). The first systematic evaluation

of all elements in the secular matrix for larger molecules by Hoffmann (1963) came
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about fully three decades after Huckel’s original work. About a decade earlier,

Pople (1953) and others introduced the use of self-consistent fields into molecular

orbital calculations. Both full-matrix and self-consistent field calculations rely

heavily on computers.

Elements of the Secular Matrix

To begin a more general approach to molecular orbital theory, we shall describe a

variational solution of the prototypical problem found in most elementary physical

chemistry textbooks: the ground-state energy of a particle in a box (McQuarrie,

1983) The particle in a one-dimensional box has an exact solution

E ¼ n2h2

8ma2
ð8-1Þ

and has an exact wave function

� ¼ A sinðkxÞ ð8-2Þ
Let the dimension of the box be 1 in any units and consider only the ground state,

for which n ¼ 1. Now

E ¼ h2

8m
¼ 0:125

h2

m
ð8-3Þ

but, although we know the answer, we wish to test our approximation method by

taking a linear combination of functions

c ¼ c1xð1� xÞ þ c2x
2ð1� xÞ2 ð8-4Þ

which we shall write

c ¼ c1f1 � c2f2 ð8-5Þ
There are two functions, so we shall obtain two eigenvalues. The ground-state

energy will be the lower of the two. The full secular matrix is

H11 � EjS11 H12 � EjS12

H21 � EjS21 H22 � EjS22

� �
ð j ¼ 1; 2Þ ð8-6Þ

If we do not make any simplifying assumptions, we must calculate the matrix

elements

H11 ¼
ð
f1Hf1 dt ð8-7aÞ

H12 ¼
ð
f1Hf2 dt ð8-7bÞ

H21 ¼
ð
f2Hf1 dt ð8-7cÞ
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and

H22 ¼
ð
f2Hf2 dt ð8-7dÞ

where the Hamiltonian operator for a particle in a box with the potential energy

V ¼ 0 is

��h2

2m

d2

dx2
ð8-8Þ

In this problem, the integral over ‘‘all space’’ dt is in only one dimension, x. The

limits of integration are the dimensions of the box, 0 and 1 in whatever unit was

chosen.

Exercise 8-1

Calculate matrix element H11

Solution 8-1

f1 ¼ xð1� xÞ
d2

dx2
xð1� xÞ ¼ �2

��h2

2m

ð1
0

xð1� xÞ d2

dx2
xð1� xÞdt ¼ ��h2

2m

ð1
0

xð1� xÞð�2Þdt

¼ �h2

m

x2

2
� x3

3

� �����1
0

¼ �h2

m

1

6
¼ �h2

6m

ð8-9Þ

Also, one needs to calculate the matrix elements

S11 ¼
ð
f1 f1 dt ð8-10aÞ

S12 ¼
ð
f1 f2 dt ð8-10bÞ

S21 ¼
ð
f2 f1 dt ð8-10cÞ

S22 ¼
ð
f2 f2 dt ð8-10dÞ

Again, the limits of integration are from zero to one.

Exercise 8-2

Calculate S11
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Solution 8-2

S11 ¼
ð1
0

xð1� xÞxð1� xÞdt

¼
ð1
0

ðx2 � x3 � x3 þ x4Þdt

¼ 1

3
� 1

4
� 1

4
þ 1

5
¼ 1

30
ð8-11Þ

Now, calculating all Hij and Sij elements in the same way, and inserting them into

the secular matrix, one obtains

�h2

6m
� Ej

30

�h2

30m
� E

140

�h2

30m
� E

140

�h2

105m
� Ej

630

0
BB@

1
CCA ð8-12Þ

Dividing each element by �h2=m and setting

x ¼ mEj

�h2

yields

1

6
� x

30

1

30
� x

140

1

30
� x

140

1

105
� x

630

0
BB@

1
CCA ð8-13Þ

This can be cleared of fractions by multiplying by 1260 to obtain the secular

determinant

210� 42x 42� 9x

42� 9x 12� 2x

����
���� ¼ 0 ð8-14Þ

corresponding to Eq. set (1-9), which was solved iteratively in Computer Project 1-

2 to yield the roots

x ¼ 4:93487 and 51:065 ð8-15Þ
The lower of the two roots is the one we seek for the ground-state energy of the

system.

Thus, x ¼ mEj=�h
2; Ej ¼ x �h2=m

� �
, and, recalling that �h ¼ h=2p,

E ¼ 4:93487

ð2pÞ2
h2

m

� �
¼ 0:125002

h2

m

� �
ð8-16Þ

as contrasted to the exact solution of 0:125 h2=mð Þ. Note that the energy obtained

from the variational solution is slightly higher than the solution obtained from the
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exact wave function. [This result makes it clear why we needed to find the roots of

Eq. (1-9) to six significant figures.]

One of the things illustrated by this calculation is that a surprisingly good

approximation to the eigenvalue can often be obtained from a combination of

approximate functions that does not represent the exact eigenfunction very closely.

Eigenvalues are not very sensitive to the eigenfunctions. This is one reason why the

LCAO approximation and Huckel theory in particular work as well as they do.

Another feature of advanced molecular orbital calculations that we can antici-

pate from this simple example is that calculating matrix elements for real molecules

can be a formidable task.

The Helium Atom

The helium atom is similar to the hydrogen atom with the critical difference that

there are two electrons moving in the potential field of a nucleus with a double

positive charge ðZ ¼ 2Þ (Fig. 8-1).
The Hamiltonian for the helium atom,

ĤH ¼ � �h2

2m
r2

1 �
�h2

2m
r2

2 �
Ze2

4pe0r1
� Ze2

4pe0r2
þ 1

4pe0r12

becomes

ĤH ¼ �1
2
r2

1 � 1
2
r2

2 �
2

r1
� 2

r2
þ 1

r12
ð8-17Þ

when atomic units are used. Regrouping,

ĤH ¼ �1
2
r2

1 �
2

r1

� �
þ �1

2
r2

2 �
2

r2

� �
þ 1

r12

we have two Hamiltonians that are identical to the hydrogen case except for a

different nuclear charge, plus an added term 1=r12 due to electrostatic repulsion of

the two electrons acting over the interelectronic distance r12

ĤHHe ¼ ĤH1 þ ĤH2 þ 1

r12
ð8-18Þ

e1

e1

r12

r2
r1

++ Figure 8-1 Schematic Diagram of a Helium Atom.
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If the Hamiltonian were to operate on an exact, normalized wave function for

helium, the energy of the system would be obtained

EHe ¼
ð1
0

�ðr1; r2ÞĤHHe�ðr1; r2Þdt ð8-19Þ

but the helium atom is a three-particle system for which we cannot obtain an exact

orbital. The orbital and the total energy must, of necessity, be approximate.

As a naive or zero-order approximation, we can simply ignore the ‘‘r12 term’’

and allow the simplified Hamiltonian to operate on the 1s orbital of the H atom. The

result is

EHe ¼ � 22

2
� 22

2
¼ �4:00 hartrees ð8-20Þ

which is 8 times the exact energy of the hydrogen atom (� 1
2
hartree). The 2 in the

numerators are the nuclear charge Z ¼ 2. In general, the energy of any hydrogen-

like atom is �Z2=2 hartrees per electron, provided we ignore interelectronic

electrostatic repulsion.

We can compare this result with the experimental first and second ionization

potentials (IPs) for helium

He�!Heþ þ e��!
He2þ þ e�

ð8-21Þ

which are energies that must go into the system to bring about ionization and hence

are equal in magnitude but opposite in sign to the binding energy of the ionized

electron. Helium has two ionization potentials, one for each electron, as shown in

reaction (8-21).

If we compare the calculated total ionization potential, IP ¼ 4:00 hartrees, with

the experimental value, IP ¼ 2:904 hartrees, the result is quite poor. The magnitude

of the disaster is even more obvious if we subtract the known second ionization

potential, IP2 ¼ 2:00, from the total IP to find the first ionization potential, IP1. The

calculated value of IP2, the second step in reaction (8-21) is IP2 ¼ Z2=2 ¼ 2:00,
which is an exact result because the second ionization is a one-electron problem.

For the first step in reaction (8-21), IP1ðcalculatedÞ ¼ 2:00 and IP1(experimental) ¼
2:904� 2:000 ¼ :904 hartrees, so the calculation is more than 100% in error.

Clearly, we cannot ignore interelectronic repulsion.

A Self-Consistent Field Variational Calculation of
IP for the Helium Atom

One approach to the problem of the r12 term is a variational self-consistent field

approximation. Our treatment here follows that by Rioux (1987), in which he starts
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from the single electron or orbital approximation, assuming that the orbital of

helium is separable into two one-electron orbitals �ð1; 2Þ ¼ cð1Þcð2Þ.
The kinetic energy operator for the one-electron system of the H atom

is �ð�h2=2mÞð1=r2Þðd=drÞr2ðd=drÞ [Eq. (6-21)] and the potential energy is �e2=r
for attraction of a single electron to the hydrogen nucleus. It is reasonable to use the

same operator for a single electron in a separated helium orbital, either cð1Þ or

cð2Þ. In atomic units we have

ĤH ¼ � 1

2r2
d

dr
r2

d

dr
ð8-22Þ

for each kinetic energy part and �2=r as each potential energy part.

Although we are solving for one-electron orbitals, c1 and c2, we do not want to

fall into the trap of the last calculation. We shall include an extra potential energy

term V1 to account for the repulsion between the negative charge on the first

electron we consider, electron 1, exerted by the other electron in helium, electron 2.

We don’t know where electron 2 is, so we must integrate over all possible locations

of electron 2

V1 ¼
ð1
0

c2

1

r12
c2 dt ð8-23Þ

The entire Hamiltonian for electron 1 is

ĤH1 ¼ � 1

2r21

d

dr1
r21

d

dr1
� 2

r1
þ
ð1
0

c2

1

r12
c2 dt ð8-24aÞ

The same treatment produces a similar operator for electron 2.

ĤH2 ¼ � 1

2r22

d

dr2
r22

d

dr2
� 2

r2
þ
ð1
0

c1

1

r12
c1 dt ð8-24bÞ

We do not know the orbitals of the electrons either. (An orbital, by the way, is

not a ball of fuzz, it is a mathematical function.) We can reasonably assume that the

ground-state orbitals of electrons 1 and 2 are similar but not identical to the 1s

orbital of hydrogen. The Slater-type orbitals

c1 ¼
ffiffiffiffiffi
a3

p

r
e�ar1 ð8-25aÞ

and

c2 ¼
ffiffiffiffiffi
b3

p

s
e�br2 ð8-25bÞ
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are chosen to approximate the two electronic orbitals in helium. The integral in

Eq. (8-24a), representing the Coulombic interaction between electron 1 at r1 and

electron 2 somewhere in orbital c2, has been evaluated for Slater-type orbitals

(Rioux, 1987; McQuarrie, 1983) and is

V1 ¼
ð1
0

c2

1

r12
c2 dt ¼

1

r1
½1� ð1þ br1Þe�2br1 � ð8-26Þ

Now the approximate Hamiltonian for electron 1 is

ĤH1 ¼ � 1

2r21

d

dr1
r21

d

dr1
� 2

r1
þ 1

r1
ð1� ð1þ br1Þe�2br1Þ ð8-27Þ

with a similar expression for ĤH2 involving a r2 in place of b r1 in the Slater orbital.

The orbital is normalized so the energy of electron 1 is

E1 ¼
ð1
0

c1ĤH1c1 dt ð8-28Þ

with a similar expression for E2.

Calculating E1 requires solution of three integrals

E1 ¼
ð1
0

c1ð�1
2
r2

1Þc1 dt�
ð1
0

c1

z

r1

� �
c1 dtþ

ð1
0

c1ðV1Þc1 dt ð8-29Þ

but we already know the first two integrals, a2=2 and � Za in atomic units, from

the solution of Exercise 6-3. We also know the potential energy V1 from Eq. (8-26).

Integration of the third term in Eq. (8-29) (Rioux, 1987) yields the energy of the

electron in orbital c1

E1 ¼ a2

2
� Zaþ abða2 þ 3abþ b2Þ

ðaþ bÞ3 ð8-30aÞ

with a similar expression for E2 except that b replaces a in the first two terms on the

right

E2 ¼ b2

2
� Zbþ abða2 þ 3abþ b2Þ

ðaþ bÞ3 ð8-30bÞ

The parameters a and b in the Slater-type orbitals for electrons 1 and 2 are

minimization parameters representing an effective nuclear charge as ‘‘experienced’’

by each electron, partially shielded by the other electron from the full nuclear

charge. The SCF strategy is to minimize E1 using an arbitrary starting b and to find

a at the minimum. In general, this a is then put into Eq. (8-30b), which is
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minimized to give a value for b at the minimum. This value then replaces the

starting value of b, and a new minimization cycle produces a new a and so on. This

iterative process is repeated until there is no difference in successive values of E1

and a, that is, until the results of the calculation are self-consistent.

In this particular case, the calculations are completely symmetrical up to

Eqs. (8-30). Everything we have said for a we can also say for b. At self-consistency,
a ¼ b so we can substitute a for b at any point in the iterative process, knowing that

as we approach self-consistency for one, we approach the same self-consistent

value for the other.

A reasonable step at the end of each iteration would be to calculate the total energy

of the atom as the sum of its two electronic energies EHe ¼ E1 þ E2, but in so

doing, we would be calculating the interelectronic repulsion abða2 þ 3abþ b2Þ=
ðaþ bÞ3 twice, once as an r12 repulsive energy and once as an r21 repulsion. The r21
repulsion should be dropped to avoid double counting, leaving

EHe ¼ E1 þ b2

2
� Zb ð8-31Þ

as the correct energy of the helium atom.

Exercise 8-3

Use Mathcad to calculate the first approximation to the SCF energy of the helium atom

Solution 8-3

Z :¼ 2:000 a :¼ 2:000 b :¼ 2:000

eða; bÞ :¼ a2

2
� Z � aþ a � b � ða2 þ 3 � a � bþ b2Þ

ðaþ bÞ3
" #

Find the value of a at which ðd=daÞeða; bÞ is zero.

a :¼ root
d

da
eða; bÞ; a

� �
a ¼ 1:6 eða; bÞ ¼ �0:812

The first iteration produces an approximation to the first ionization potential of He that is

�ð�0:812Þ hartrees, 10.2% too small. This is a great improvement over the > 100% error

we found when the r12 term was completely ignored.

Exercise 8-4

Continue the calculation in Exercise 8-3 substituting 1.6 as the initial value of b,
minimizing to find a new value of a. How much in error is the calculated value of the

first ionization potential of He relative to the experimental value of 0.904 hartrees?
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Solution 8-4

a ¼ 1:713 eða; bÞ ¼ �0:925

E :¼ eða; bÞ þ b2

2
� Z � b E ¼ �2:845

The error, on the second iteration, has been reduced to 6.5%. Notice that the calculated

IP1 on this iteration is too large.

COMPUTER PROJECT 8-1 j The SCF Energies of First Row Atoms

and Ions

Using as many methods as are available to you for comparison (Mathcad, QBASIC,
and TRUE BASIC), determine the self-consistent field (SCF) energies of the He

atom and of the ions Liþ, Be2þ, and B3þ. Fill in the SCF column of Table 8-1.

Plot the total SCF energy of the He atom and the three two-electron ions as a

function of the nuclear charge Z. Describe the curve (linear, monotonic, etc.) so

obtained. Using the GAUSSIAN# package, calculate the energies of the atoms and

ions in Table 8-1 at the STO-2G and STO-3G levels. The STO-xG levels of

calculation are carried out by using a wave function that is the sum of two or more

Gaussian functions with parameters chosen so as to approximate a Slater-type

orbital. The STO-xG levels of calculation will be discussed in more detail in

the next section, but for now, all you need to know is that the six-line input file

# STO-2G

Helium

0 1

He

will provide the solutions for this project. GAUSSIAN for WINDOWS has a

template that facilitates writing input files, but input files can also be written using a

DOS editor. Mind the blank lines 2 and 4.

To fill out Table 8-1, change the element symbols in the last line to Li, Be, or B

and designate the charge and spin multiplicities as 1 1, 2 1, 3 1 in that order. In

line 5, the first number is the single positive charge and the second number is the

spin multiplicity, 1 for paired electronic spins and 2 for an unpaired electron. A

Table 8-1 Energies (in hartrees) of First Row Atoms and Ions

SCF STO-2G STO-3G Exp.

He �2:848 �2:702 �2:808 �2:904
Liþ �7:280
Be2þ �13:657
B3þ �22:035
% error
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space between the charge and spin multiplicity is essential. The spin multiplicities

are all 1 here because each problem is a two-electron problem and the two spins are

paired. To go from an STO-2G calculation to an STO-3G calculation, change the

2 to a 3 in the route section (line 1) of the input file.

COMPUTER PROJECT 8-2 j A High-Level ab initio Calculation of

SCF First IPs of the First Row Atoms

In contrast to the low-level calculations using the STO-3G basis set, very high level

calculations can be carried out on atoms by using the Complete Basis Set-4 (CBS-4)

procedure of Petersson et al. (1991,1994). For atoms more complicated than H or

He, the first ionization potential (IP1) calculation is a many-electron calculation in

which we calculate the total energy of an atom and its monopositive ion and

determine the IP of the first ionization reaction

A ! Aþ þ e�

from the difference �ðEAþ � EAÞ. The CBS-4 ‘‘program’’ is actually a suite of

several programs and corrections that are linked to one another so that they are

carried out sequentially. The procedure is intended to come very close to the result

that would have been obtained by using a complete basis set by extrapolation from

a large but (obviously) finite basis set.

Procedure. To go from an STO-3G calculation to a CBS-4 calculation, simply

replace STO-3G with CBS-4 in the route section of the program used in Computer

Project 8-1. Complete Table 8-2 by filling in the CBS-4 Energies of the atoms and

ions listed in columns 1 and 3 of Table 8-2 and put them into columns 2 and 4 of the

table. You will notice that some of the simpler atoms (H through Be) do not have a

listed CBS-4 Energies, but they do have an SCF energy, which should be used in

its place. Calculate the IP and complete column 5. Pay special attention to spin

multiplicity and Hund’s rule. The spin multiplicity is nþ 1 where n is the number

Table 8-2 Electronic Energies of Atoms and Single-Positive Ions in the First Row

of the Atomic Table

Element Energy (hartrees) Ion Energy (hartrees) IP IP(exp)

H �0:4988 Hþ — 0.4988

He Heþ

Li Liþ

Be Beþ

B Bþ

C Cþ

O Oþ

N Nþ

F Fþ

Ne Neþ
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of unpaired electrons in the atom. This may require some thought for atoms C

through Ne. If necessary, review the subject of ionization potentials in a good

general chemistry textbook (e.g., Ebbing, and Gammon, 1999). Experimental

values for column 6 can be obtained from most general chemistry textbooks.

They may require unit conversion.

Look up the experimental values of the first ionization potential for these atoms

and calculate the average difference between experiment and the computed values.

Depending on the source of your experimental data, the arithmetic mean difference

should be within 0.010 hartrees. Serious departures from this level of agreement

may indicate that you have one or more of your spin multiplicities wrong.

Plot the calculated first IPs as a function of the atomic number Z for the elements

from H to Ne in the atomic table. The plot has a characteristic shape that should be

familiar from earlier courses. These plots are frequently given in the experimental

units of electron volts (eV; hartrees� 27:21 ¼ eV) or kilojoules per mole (kJ mol�1;

hartrees� 2625 ¼ kJmol�1). Write a paragraph or two in your project report

explaining why the graph of IP vs. Z appears as it does.

The STO-xG Basis Set

The true value of � for a many-electron atom or a molecule is unknown. If we

could set it equal (‘‘expand’’ it) to a linear combination of an infinite number of

basis functions, each defined in a space of infinite dimensions, we could carry out

an exact calculation of �. Such a set of basis functions would be a complete set.

The various basis sets used in a calculation of the H and S integrals for a system

are attempts to obtain a basis set that is as close as possible to a complete set but to

stay within practical limits set by the speed and memory of contemporary

computers. One immediately notices that the enterprise is directly dependent on

the capabilities of available computers, which have become more powerful over the

past several decades. The size and complexity of basis sets in common use have

increased accordingly. Whatever basis set we choose, however, we are attempting to

strike a balance. If the basis set is too small, it is inaccurate; if it is too large, it

exceeds the capabilities of our computer. Whether our basis set is large or small, if

we attempt to calculate all the H and S integrals in the secular matrix without any

infusion of empirical information, the procedure is described as ab initio.

Basis functions are themselves contractions of simpler functions called primi-

tives. Contractions are used because they are easier for the computer to handle;

hence, they economize on computer power, with the obvious advantage that larger

problems can be solved with greater accuracy. We shall illustrate this idea by

contracting three Gaussian primitives to approximate a Slater-type orbital (STO).

The resulting contraction is called an STO-3G basis function. If this basis is used to

describe the 1s atomic orbitals of H and He, it is the minimal basis because H and

He have only 1s electrons in the ground state. A minimal basis set contains the

smallest number of basis functions necessary for each atom. The minimal basis set

for C is 1s, 2s, and 2p. This is larger than the minimal basis set for H because C has

a more complicated electronic structure than H. In some approximations, the 1s
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electrons of carbon are considered part of the ‘‘core’’ along with the nucleus, and

only the 2s and 2p electrons are included in the minimal basis set. Notice that the

number of Gaussians does not determine whether a basis set is minimal; both STO-

2G and STO-3G are minimal. In the use of a contracted basis set, the primitives are

not manipulated independently; they form a single basis function and are treated by

the computer as a unit.

The Hydrogen Atom: An STO-1G ‘‘Basis Set’’

We shall construct the simplest possible basis function by fitting a single Gaussian

to the 1s STO for the hydrogen atom, with the intention of building up to the STO-

3G basis set later. The task is similar to what was done in Computer Project 6-1. In

Part A of that project, we optimized the hydrogen 1s orbital f ða; rÞ ¼ e�ar by the

variational method and got the exact value, �0.5000 hartrees, for the ground-state

energy. In Part B, we found that the lowest variational energy of the Gaussian

function gðg; rÞ ¼ e�gr2 is obtained when g has been optimized to about 0.83. The

result, �0.424 hartrees, is the lowest variational energy you can get from this

function, but it is not as good as the result found when the true hydrogenic orbital

was used.

In the following, we shall examine the approximation to the Slater-type 1s hydro-

gen wave function by one Gaussian function using Program GAUSSIAN94W#, a

commercial package for Gaussian and related calculations, specifically adapted for

a Windows# environment.

The Slater-type orbitals are a family of functions that give us an economical way

of approximating various atomic orbitals (which, for atoms other than hydrogen, we

don’t know anyway) in a single relatively simple form. For the general case, STOs

are written

fSð�; n; l;m; r; y;fÞ ¼ Nrn�1e�� rYm
l ðy;fÞ ð8-32Þ

but for the spherically symmetric 1s orbital of hydrogen, variation in the spherical

harmonic Ym
l ðy;fÞ drops out and n� 1 ¼ 0, so

fSð�; rÞ ¼ Ne�� r ð8-33Þ
where N is a constant. This function is really just the exact 1s wave function for

hydrogen �ðrÞ ¼ Ne� r because � ¼ Z ¼ 1 for this special case, that is, the STO is

the same as the wave function �.

The Gaussian function can be written

gðg; rÞ ¼ Cxmynzle�g r2 ð8-34Þ
but for the spherically symmetric 1s case, the Cartesian terms xmynzl ¼ 1:0 so we

have

gðg; rÞ ¼ Ce�g r2 ð8-35Þ

where C is a constant.
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In Computer Projects 8-1 and 8-2, we used the STO and CBS basis sets stored as

part of the data base of GAUSSIAN. The general basis case (keyword gen) in

GAUSSIAN permits us to bypass the stored basis sets (there is no stored STO-1G

basis set) and make our own basis functions. To run GAUSSIAN under the general

basis input to determine the SCF output for the ground state of the hydrogen atom

using a single Gaussian trial function, the input file is

# gen

hatom gen

0 2

h

1 0

S 1 1.00

0.282942 1.0

****

Input File 8-1. The General Basis Input for an STO-1G Calculation of the

Ground State Energy of the Hydrogen Atom.

The first line # gen (route section) tells the system that we want to define our

own function. The lines 2, 3, and 4 are a blank line, program label (for human

readers), and a blank line. The next line that is read by the system is 0 2, specifying

that the ground state of H has a 0 charge and is a spin doublet (one unpaired

electron). The next line, h, specifies hydrogen, followed by a blank.

The remainder of the input file gives the basis set. The line, 1 0, specifies

the atom center 1 (the only atom in this case) and is terminated by 0. The next line

contains a shell type, S for the 1s orbital, tells the system that there is 1 primitive

Gaussian, and gives the scale factor as 1.0 (unscaled). The next line gives

g ¼ 0:282942 for the Gaussian function and a contraction coefficient. This is the

value of g, the Gaussian exponential parameter that we found in Computer Project

6-1, Part B. [The precise value for g comes from the closed solution for this

problem 8=9p (McWeeny, 1979).] There is only one function, so the contraction

coefficient is 1.0. The line of asterisks tells the system that the input is complete.

When we run this program, we get a good deal more information than we are

ready for at this point, but one thing is obvious: the energy, found in the last block

of output,

HF ¼ �0:4244132

This result agrees with Computer Project 6-1, but it is not very good, �0.4244

hartrees, as compared to the exact solution of �0.5000, a 15.1% error. What went

wrong?

The Gaussian, with r2 in the exponent, drops off faster than the true 1s orbital,

which has r in the exponent. The Gaussian is too ‘‘thin’’ at larger distances r from

the nucleus (Fig. 8-2).
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Having obtained a mediocre solution to the problem, we now seek to improve it.

The next step is to take two Gaussian functions parameterized so that one fits the

STO close to the nucleus and the other contributes to the part of the orbital

approximation that was too thin in the STO-1G case, the part away from the

nucleus. We now have a function

STO-2G ¼ C1e
�g1 r

2 þ C2e
�g2 r

2 ð8-36Þ
that has two g parameters, which determine how extended the Gaussian is in the r

direction (how ‘‘fat’’ the tail of the function is), and two C parameters, which

determine how much of a contribution each Gaussian makes to the final STO

approximation (Fig. 8-3).

STO-2G ¼ C1e
�g1 r

2 þ C2e
�g2 r

2

g1 ¼ 1:31 g2 ¼ 0:233

C1 ¼ 0:430 C2 ¼ 0:679

It is easy to see that the full shape of the 1s orbital is better represented by the

sum of these two Gaussians, especially at the tail of the curve where chemical

bonding takes place, than it is by one Gaussian. When we run an STO-2G ab initio

calculation on the hydrogen atom using the GAUSSIAN stored parameters rather

than supplying our own, the input file is

# sto-2g

hatom

0 2

h

Input File 8-2. The Input File for a STO-2G Calculation Using a Stored Basis Set.

0 1 2 3

0.5

1

y(x)

y(x) := exp(−x) z(x) := exp(−x2)

z(x)

x, x

Figure 8-2 The 1s Orbital Shape and a Gaussian Approximation (dotted line).
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We find that there are two Gaussian primitives and one unpaired electron from the

output

1 basis functions 2 primitive gaussians

1 alpha electrons 0 beta electrons

which agrees with the picture of the STO-2G basis set that we are trying to build. Of

course, we want to know what the parameters are for the two Gaussians. The

keyword GFinput inserted after # sto-2g in the route section of the input file

produces an output file with the added information

Basis set in the form of general basis input:

1 0

S 2 1.00

0.1309756377Dþ 01 0.4301284983Dþ 00

0.2331359749Dþ 00 0.6789135305Dþ 00

****

Output File 8-1. Parameters for the STO-2G Basis Set.

The parameterized STO-2G basis function is

STO-2G ¼ 0:4301e�1:309 r2 þ 0:6789e�0:233 r2 ð8-37Þ

which is the function graphed in Fig. 8-2. The smaller exponent contributes to the

‘‘tail’’ of the composite function by causing it to drop off less rapidly with r, and the

0 1 2 3 4

0.5

1

p1(r)

g1 := 1.31

p1(r) := .430 exp(−g1.r2)

g2 := .233

p2(r) := .679 exp(−g2.r2)

p2(r)

p1(r)+p2(r)

r

Figure 8-3 Approximation to the 1s Orbital of Hydrogen by 2 Gaussians. The upper curve is

the sum of the lower two curves.
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larger exponent contributes to the function at small values of r. The coefficients

0.4301 and 0.6789 give the intercepts of the two Gaussians at r ¼ 0.

We now have two ways of inserting the correct parameters into the STO-2G

calculation. We can write them out in a gen file like Input File 8-1 or we can use the

stored parameters as in Input File 8-2. You may be wondering where all the

parameters come from that are stored for use in the STO-xG types of calculation.

They were determined a long time ago (Hehre et al, 1969) by curve fitting Gaussian

sums to the STO. See Szabo and Ostlund (1989) for more detail. There are

parameters for many basis sets in the literature, and many can be simply called

up from the GAUSSIAN data base by keywords such as STO-3G, 3-21G, 6-31G*,

etc.

But what of the energy?

HF ¼ �0:4543974

The energy is lower (better) than the STO-1G approximation but not as good as the

exact 1s orbital. The error has been reduced from 15.1% to 9.1%.

This process is carried further for the STO-3G approximation (Fig. 8-4).

The energy for the STO-3G approximation is 0.4665819 hartrees, 6.7% in error

relative to the exact value. The process has been continued up to STO-6G, the point

at which the originators of the procedure stopped because improvement levels out

for the larger expansions. One can see this trend in the diminished improvement in

our calculations. The first addition brought about a diminution in error by 6%, but

addition of a third Gaussian only brought the error down by 2.4%. The calculated

energy is approaching a limit, but the limit is not the exact energy. The limit

0 1 2 3 4

0.5

1
p1(r)

p2(r)

p3(r)

p1(r)+p2(r)+p3(r)

r

g1 := 3.43

p1(r) := .154 exp(−g1.r2)

g2 := .624

p2(r) := .535 exp(−g2.r2)

g3 := .100

p3(r) := .444 exp(−g3.r2)

Figure 8-4 A Sum p1(r)þ p2(r)þ p3(r) (top curve) of Gaussians Used as the STO-3G

Approximation the 1s Orbital.
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approached is called the Hartree–Fock limit, of which more will be said later. The

calculation carried out up to this point is called a Hartree–Fock calculation, which

is why the energy is labeled HF in the output file.

Semiempirical Methods

If we are willing to use empirical observations in place of the integrals in the

secular matrix, we can avoid calculating some or all of the matrix elements. For

example, as seen in the EHT method, the negative of the spectroscopic atomic

ionization energy makes a good substitute for the calculated Coulomb energy on the

logic that the amount of energy necessary to drive a valence electron away from its

core is equal and opposite to the amount of energy that held it there in the first

place. (This is not strictly true because of rearrangement of the core electrons

during the ionization process.) Filling in the matrix elements by fitting them to

spectroscopic or other experimental data leads to a semiempirical calculation of the

eigenvalues and eigenfunctions. Such methods are not fully empirical, even though

they use empirical information, because they are rooted in quantum theory as

expressed through the variational principle.

Semiempirical methods, of which there are quite a few, differ in the proportion

of calculations from first principles and the reliance on empirical substitutions.

Different methods of parameterization also lead to different semiempirical

methods. Huckel and extended Huckel calculations are among the simplest of the

semiempirical methods. In the next two sections, we shall treat a semiempirical

method, the self consistent field method, developed by Pariser and Parr (1953) and

by Pople (1953), which usually goes under the name of the PPP method.

PPP Self-Consistent Field Calculations

In the Huckel method, we assumed an initial constant p electron density q of one

electron per carbon about all carbon atoms in a conjugated p electron system. We

also took the electron exchange integrals between atoms to be one arbitrary unit of

energy, according to whether the atoms are connected (b ¼ 1) or not connected

(b ¼ 0). The eigenvectors (coefficients) generated in diagonalizing the secular

determinant, however, yield electron densities and bond orders that are in contra-

diction to the original assumptions. In particular, if a bond order between atoms p

and q is large and that between r and s is small, then the resonance integral b is not

the same for these atom pairs, but bpq > brs.
It seems reasonable that, by taking into account the information we have

generated in a set of calculated eigenvalues and eigenvectors, we can repeat the

calculation and get a new and better set of eigenvalues and eigenvectors. If this

works once, it should work many times. There may be convergence to a result that,

though not exact, is self-consistent and is a better description of the molecule than

the single matrix diagonalization of the Huckel method. This is the essence of the

PPP-SCF method.
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We have the makings of an iterative computer method. Start by assuming values

for the matrix elements and calculate electron densities (charge densities and bond

orders). Modify the matrix elements according to the results of the electron density

calculations, rediagonalize using the new matrix elements to get new densities, and

so on. When the results of one iteration are not different from those of the last by

more than some specified small amount, the results are self-consistent.

Both on- and off-diagonal elements are modified, but for simplicity, we shall

reset the diagonal elements to zero after each iteration. In this way, orbital energies

will be found that are above and below an arbitrary zero energy, stressing the

analogy between the PPP-SCF method and the Huckel method. This is an

acceptable procedure for hydrocarbons with alternating double and single bonds,

called alternant hydrocarbons.

The PPP-SCF Method

In PPP-SCF calculations, we make the Born–Oppenheimer, s-p separation, and

single-electron approximations just as we did in Huckel theory (see section on

approximate solutions in Chapter 6) but we take into account mutual electrostatic

repulsion of p electrons, which was not done in Huckel theory. We write the

modified Schroedinger equation in a form similar to Eq. 6.2.6

F̂FðiÞcðiÞ ¼ EðiÞcðiÞ ð8-38Þ

to emphasize that F̂F is an operator similar to the one-electron Hamiltonian operator.

The linear combination

ci ¼
X

aijfj ð8-39Þ

is used to generate a secular matrix,

F11 � S11E F12 � S12E . . .
F21 � S21E . . .

. . .

0
@

1
A ð8-40Þ

analogous to the Huckel matrix. The F matrix can be written succinctly as

F11 � E F12 . . .
F21 . . .
. . .

0
@

1
A ð8-41Þ

if the S matrix is taken to be I (overlap integrals are approximated as zero or one).

The corresponding matrix equation

FA ¼ AE ð8-42Þ
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leads to E, the diagonal matrix of eigenvalues, and A, the matrix of eigenvector

coefficients.

In the Huckel theory of simple hydrocarbons, one assumes that the electron

density on a carbon atom and the order of bonds connected to it (which is an

electron density between atoms) are uninfluenced by electron densities and bond

orders elsewhere in the molecule. In PPP-SCF theory, exchange and electrostatic

repulsion among electrons are specifically built into the method by including

exchange and electrostatic terms in the elements of the F matrix. A simple example

is the 1,3 element of the matrix for the allyl anion, which is zero in the Huckel

method but is 1.44 eV due to electron repulsion between the 1 and 3 carbon atoms

in one implementation of the PPP-SCF method.

The elements of the F matrix depend on either the charge densities q or the bond

orders p, which in turn depend on the elements of the F matrix. This circular

dependence means that we must start with some initial F matrix, calculate

eigenvectors, use the eigenvectors to calculate q and p, which lead to new elements

in the F matrix, calculate new eigenvectors leading to a new F matrix, and so on,

until repeated iteration brings about no change in the results. The job now is to fill

in the elements of the F matrix.

The diagonal matrix element Frr is broken up into three parts

Frr ¼ Urr þ 1
2
qrgrr þ

X
t 6¼r

qtgrt ð8-43Þ

where Urr is the localized one-electron Hamiltonian relating to the interaction of

electron i with the core at carbon atom r. The term 1
2
qrgrr is the potential energy of

repulsion between electron i and the charge due to all other electrons that can

occupy the same orbital. The factor 1
2
appears because, to occupy the same orbital

with i, electrons must have opposite spin, that is, they are one-half the total. The

sum includes repulsions at all other atoms, t 6¼ r. In Huckel theory, we were free to

pick an arbitrary zero of energy a, and in PPP-SCF theory we can do the same thing.

The reference point Urr is set equal to zero. This leaves only one term and the sumP
t 6¼r

qtgrt on the right of Eq. (8-43), wherewith to obtain the matrix element Frr.

Let us illustrate the meaning of Frr by the example of carbon atom 1 in the

linear, three-carbon allyl anion C3H
�
6 . There are two carbon atoms other than C1,

one adjacent and the other nonadjacent. Equation (8-44) has three terms, one for

each carbon atom

F11 ¼ 1
2
q1g11 þ q2g12 þ q3g13 ð8-44Þ

There are similar on-diagonal terms for C2 and C3 in the allyl anion. Expect to see

these matrix elements again.

The off-diagonal elements in the F matrix Frt are defined for neighboring atoms,

which are not necessarily adjacent. There are no rr interactions for neighbor atoms.
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In the case of adjacent atoms, a bond exists characterized by a bond energy bSCF

analogous to the b of Huckel theory but modified by an electron exchange term

Frt ¼ bSCF � 1
2
prtgrt ð8-45Þ

that is, the value of F̂F is made more negative (bonding) by the electron density prt
between atoms r and t times the parameter grt. The matrix elements Frt are unlike b
in the Huckel treatment in that they change during iteration.

The parameters grr or grt are empirical estimates of how effective repulsion is

between an electron in orbital i and the charge clouds on ‘‘its own’’ carbon atom r

or the neighboring carbon atoms t in the molecule. For more distant carbon atoms t,

grt is smaller, as expected for a smaller orbital interaction. Different recipes for

obtaining empirical grt values have been used (Pilar, 1990). They give similar

values. By one scheme, grr is taken to be the ionization energy of the carbon atom.

More generally, a physical model of interacting negatively-charged spheres is used

to calculate repulsive energies 1
2
prtgrt and the results are fitted to conform with

experimental measurements.

Pariser and Parr adjusted the necessary parameters to the empirical singlet and

triplet excitation energies in benzene to obtain

g11 ¼ 11:35 eV

g12 ¼ 7:19 eV

g13 ¼ 5:77 eV ð8-46Þ
g14 ¼ 4:79 eV

where the subscript 12 indicates nearest neighbors and 13 and 14 are the next most

distant carbon atoms, etc. Fitting bSCF to the HOMO-LUMO transitions in benzene

in a manner similar to Computer Project 6-2 yields

bSCF ¼ �2:37 eV ð8-47Þ

Having filled in all the elements of the F matrix, we use an iterative diagonaliza-

tion procedure to obtain the eigenvalues by the Jacobi method (Chapter 6) or its

equivalent. Initially, the requisite electron densities are not known. They must be

given arbitrary values at the start, usually taken from a Huckel calculation. Electron

densities are improved as the iterations proceed. Note that the entire diagonalization

is carried out many times in a typical problem, and that many iterative matrix

multiplications are carried out in each diagonalization. Jensen (1999) refers to an

iterative procedure that contains an iterative procedure within it as a ‘‘macroitera-

tion.’’ The term is descriptive and we shall use it from time to time.

Like Frt ¼ bSCF � 1
2
prtgrt, the zero point, which we may denote aSCF, changes

during iteration. Because it is an arbitrary reference point to begin with, we can

redefine it as zero after each iteration, ending up with a set of energy levels that

qualitatively resembles the set of Huckel energy levels. As in Huckel theory for
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alternant hydrocarbons (Smith, 1996), orbital energies are symmetrically distrib-

uted above and below a (defined) zero, although the calculated values of the

energies are not the same. Energy distribution about aSCF is not symmetrical for

molecules other than alternant hydrocarbons.

Ethylene

The simplest application is to ethylene. There are only two Frr elements and they

are identical, so, completing the analogy with Huckel theory, let us define their

energies aSCF. The SCF matrix is

aSCF � ESCF F12

F21 aSCF � ESCF

� �
ð8-48Þ

We can calculate F12 ¼ F21 for the first diagonalization as F12 ¼ bSCF � 1
2
p12g12,

where bSCF ¼ �2:37 eV from Eq. (8-47) and g12 is the repulsion integral for

electrons on atoms 1 and 2, adjacent carbon atoms, which are the only kind in

ethylene. Equation set (8-46) gives 7.19 eV for g12. The initial bond order (electron

density between atoms) from Huckel theory is 1.00, hence

F12 ¼ F21 ¼ �2:37� 1
2
1:00ð7:19Þ

¼ �5:96 eV

The form of the SCF matrix is the same as the Huckel matrix; hence, we substitute

0 �5:96
�5:96 0

� �
ð8-49Þ

which is diagonalized as the Huckel matrix was to yield

ESCF ¼ �F12 ¼ 	5:96 eV ð8-50Þ

The solution comes out to be very similar to the Huckel solution for ethylene

except that the two energy levels, specified as, are 5.96 eVabove and 5.96 eV below

the reference level (Fig. 8-5).

α

π∗

π

} 5.96 eV

} 5.96 eV

Figure 8-5 The Energy Levels of Ethylene Under the PPP-SCF

Parameterization. The p orbital is bonding and the p* orbital is

antibonding.
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On the basis of this calculation, one would expect to find a p ! p� spectroscopic
transition at

11:92 eVð8065Þ ¼ 9:61� 104cm�1

where 8065 is the conversion factor from eV to cm�1. In fact, in semiquantitative

agreement with the calculated p ! p� energy separation, ethylene does have a

strong absorption band at 6:21� 104cm�1 in the vacuum ultraviolet.

In the case of ethylene, we have reached self-consistency in one iteration, that is,

the output of the calculation is the same as the input F matrix. In general this will

not be true.

Exercise 8-5

Extend the PPP-SCF calculation from ethylene to the allyl anion, C3H
�
6 .

C C C
0.50 0.00 0.50

− −

Solution 8-5

Find the eigenvectors (eigenfunctions), charge densities q, and bond orders p of C3H
�
6 by

the Huckel method. This provides a starting input matrix.

Eigen functions

J¼ 1 2 3

1 .50000 �.70711 �.50000

2 .70711 .00000 .70711

3 .50000 .70711 �.50000

Charge densities

�.5000 .0000 �.5000

Bond order matrix

1.5000

0.7071 1.0000

�.5000 0.7071 1.5000

To form the first SCF input matrix from the HMO calculation, fill the charge densities and

bond orders into the matrix

1
2
q1g11 þ q2g12 þ q3g13 bSCF � 1

2
p12g12 �1

2
p13g13

bSCF � 1
2
p12g12 q1g12 þ 1

2
q2g11 þ q3g23 bSCF � 1

2
p23g23

�1
2
p13g13 bSCF � 1

2
p23g23 q1g13 þ q2g23 þ 1

2
q3g11

0
BB@

1
CCA
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which leads to

1
4
g11 þ 1

2
g13 bSCF � 1

2
0:707g12

1
4
g13

bSCF � 1
2
0:707g12 g12 bSCF � 1

2
0:707g12

1
4
g13 bSCF � 1

2
0:707g12

1
4
g11 þ 1

2
g13

0
BB@

1
CCA

If we take gij ¼ 11:35, 7.19, 5.77, and bSCF ¼ 2:37, we get

5:72 �4:91 1:44
�4:91 7:19 �4:91
1:44 �4:91 5:72

0
@

1
A

which has the roots and eigenvectors

SCF :¼
5:72 �4:91 1:44

�4:91 7:19 �4:91

1:44 �4:91 5:72

0
B@

1
CA

eigenvals ðSCFÞ ¼
0:231

4:28

14:119

0
B@

1
CA eigenvecs ðSCFÞ ¼

0:501 0:707 0:499

0:706 0 �0:708

0:501 �0:707 0:499

0
B@

1
CA

as compared to the eigenvectors of the Huckel matrix

HUC :¼
0 1 0

1 0 1

0 1 0

0
B@

1
CA

eigenvecs ðHUCÞ ¼
0:5 0:707 0:5

0:707 0 �0:707

0:5 �0:707 0:5

0
B@

1
CA

Summing over the squares of the coefficients of the lower two orbitals (the upper orbital is

unoccupied), we get electron densities of 1.502 at the terminal carbon atoms and 0.997 at

the central atom. The charge densities on this iteration are

q1 ¼ q3 ¼ �1:502� ð�1:000Þ ¼ �0:502 eV

and

q2 ¼ �0:997� ð�1:000Þ ¼ þ0:003 eV

where the charge density is equal and opposite to the electron density and �1.000

accounts for the single charge brought into the molecule in the p orbital of atomic carbon.

Thus the charge densities q are excess charges over all those present within the neutral

molecule. There is a slightly higher calculated charge density at the terminal carbon

atoms at the expense of the central carbon relative to the electron densities we got by the
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HMO method. This is because electron repulsion is taken into account in the SCF

calculation whereas it is not taken into account in the Huckel calculation.

Spinorbitals, Slater Determinants, and
Configuration Interaction

Because single-electron wave functions are approximate solutions to the Schroe-

dinger equation, one would expect that a linear combination of them would be an

approximate solution also. For more than a few basis functions, the number of

possible linear combinations can be very large. Fortunately, spin and the Pauli

exclusion principle reduce this complexity.

Thus far, we have considered only the space part of one-electron orbitals, but

each orbital also has a spin part. An electron is described by four quantum numbers.

An orbital can be written as the product of its space part and its spin part

�ðx;y;z;sÞ ¼ fðx;y;zÞsðsÞ ð8- 51Þ

where �ðx;y;z;sÞ is called a spinorbital. The Pauli principle says that no two

electrons may be identical in all respects (have all four quantum numbers the same)

or, in a more general form, that any electron exchange must be antisymmetric

(bring about a change in sign of the spinorbital). Determinants have the property

that if two rows or columns are identical, the determinant is zero (vanishes) or when

rows or columns are exchanged (Exercise 2-14), the sign of the determinant

changes sign. These are just the properties we are looking for.

Slater showed that spinorbitals, arrayed as a determinant, change sign on

electron exchange so as to obey the Pauli principle. If we write a linear combination

of two spinorbitals as a determinant where we assume the space parts are the same

but the spin parts are not the same

�ð1; 2Þ ¼ fð1;aÞ fð1;bÞ
fð2;aÞ fð2;bÞ
����

���� ð8- 52Þ

we get the antisymmetric linear combination

�ð1; 2Þ ¼ fð1;aÞfð2;bÞ�fð2;aÞfð1;bÞ ð8- 53Þ

but we do not get the symmetric combination �ð1; 2Þ ¼fð1;aÞfð2;bÞþ
fð2;aÞfð1;bÞ. Determinants like Eq. (8-52), which can be quite large for large

basis sets, are called Slater determinants. In the general case, the Slater determinant

is antisymmetric. Note also that if we make the spins the same (all four quantum

numbers the same)

�ð1; 2Þ ¼ fð1;aÞ fð1;aÞ
fð2;aÞ fð2;aÞ
����

����
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the Slater determinantal wave function vanishes. Linear combinations that do not

obey the Pauli principle can be discarded.

Wave functions that do satisfy the Pauli principle are said to be antisymmetrized.

Just as it is possible to construct linear combinations of simple functions to

approximate solutions to the Schroedinger equation, it is also possible to make a

linear combination of antisymmetrized determinantal wave functions to give

approximate solutions, that is, linear combinations of linear combinations. We

shall call these multiple-determinant wave functions. By the general principle that

larger basis sets more closely approximate the Schroedinger equation than smaller

subsets thereof, multiple-determinant wave functions should be better approxima-

tions to the solution of the Schroedinger equation than single-determinant wave

functions. An infinitely large multiple-determinant wave function converges on the

exact wave function �. In practice, multiple-determinant wave functions in PPP-

SCF theory affect the excited states; hence, they are important in determining

spectra, which involve the transition of an electron from the ground state to an

excited state.

As described up to now, the PPP-SCF procedure using a single determinant

overestimates electronic repulsion because all electrons are assumed to be locked

into the ground state. This error can be diminished by use of multiple-determinant

wave functions. Quantum mechanically, occupation of any state has some nonzero

probability, although the ground state predominates. Each single-determinant

wave function has some unoccupied orbitals called virtual orbitals. Replacing a

filled orbital with a virtual orbital (promoting electrons to an excited state) gives a

new basis function for the linear combination that is to generate the multiple-

determinant wave function. More than one substitution of virtual for occupied

orbitals can be made (CI doubles, triples, etc.), approaching the full configuration

interaction solution called a full CI solution. The degree of CI substitution chosen is

a trade-off between accuracy required and computer time allowed because CI

methods approaching full CI interactions are very time consuming. Antisymme-

trization and CI substitution will be treated in more detail in Chapters 9 and 10.

The Programs

The SCF program used here is a modified and cut-down version of the suite of

SCOF programs given by Greenwood (1972). It is available in a compiled version

SCF.EXE and a source version SCF.FOR. STO-xG and CBS-4 methods are

available as part of the GAUSSIAN94W and GAUSSIAN98 suites of programs.

Program SCF should be stored in a FORTRAN directory along with SHMO and

HMO. Program SCF is run from the system level by the command scf.

COMPUTER PROJECT 8-3 j SCF Calculations of Ultraviolet

Spectral Peaks

This project will familiarize you with the input necessary to carry out calculations

using Program SCF. The concept involved is the reverse of that used in Computer
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Project 6-2. In the earlier project, you were asked to find a series of LUMO-HOMO

energy separations in units of b for four linear conjugated hydrocarbons, ethylene,

1,3-butadiene, 1,3,5-hexatriene, and 1,3,5,7-octatetraene and then to fit a linear

function to the four energies in units of b versus the corresponding experimental

ultraviolet spectroscopic energies in units of cm�1. The slope of the linear function

gave the size of the energy b in units of cm�1. After this it was a simple matter to

convert cm�1 to other units, eV, kJ mol�1, etc.

In this project, we shall predict the wavelength of the absorption maxima of the

same four polyenes using the calculated difference (in units of eV), between the

LUMO and HOMO of these four molecules (Fig. 8-6). Bear in mind that this is not

an ab initio calculation of wavelengths of maximum absorption, because emp-

irically fitted parameters, bSCF, g11, g12 , . . . , exist within the program or are

calculated internally from empirical parameters and the input geometry. In Program

SCF, the gij parameters are step functions up to the distance 2.81 Å, but are

continuous functions beyond that distance. Note that g14 < 4:97 eV.

Procedure. Carry out SCF calculations for ethylene, 1,3-butadiene, 1,3,5-hexa-

triene, and 1,3,5,7-octatetraene using Program SCF. The program prints a series of

prompts. You will need to designate the number of molecules to be run in any

series, for example, by answering NMOLS? with 001. You will need to tell how

many molecular orbitals will be calculated and how many are filled, for example,

004002 for 1,3-butadiene. You will need to specify the geometry by giving the

x-coordinates of all atoms in the molecule followed by the y-coordinates. The

molecule is assumed to be planar; hence, the z-coordinates are all 0. Unformatted

inputs are separated by commas, for example, 0,1.4,2.1,3.5 for the x-coordinates of

butadiene and 0,0,1.2,1.2 for the y-coordinates. Following this, the atoms are

numbered in the same order as the coordinates were entered, obviously, 1,2,3,4 in

this case. Use commas to separate unformatted entries. At this point, the coordi-

nates are automatically printed out as an input check. The number of derivatives is

asked, NDER?. For now, we are only interested in the parent compound; enter

0001. After more output, you are asked for OPTIONS? For now, choose 0000.

Designators like I3 are input formats (Chirlian, 1981). I3 signifies an integer in the

rightmost position in a field of 3 digits, for example, 001.

1.4,0      2.1,1.2     3.5,1.2   4.2,0         5.6,0     6.3,1.2     7.7,1.2  0,0

Figure 8-6 Approximate x-y Coordinates for the Alternant Hydrocarbons Ethene Through

1,3,5.7-Octatetraene.
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Sketch the molecules on graph paper to help in determining the atomic

coordinates. This is the first use of molecular geometry, a property that will

become increasingly important as we go on. At this stage, the geometries are

approximate; the difference, for example, between cis and trans isomers is

ignored.

Determine the SCF energy difference between the LUMO and HOMO for these

molecules. Program output is in eV. Convert to cm�1. Predict the wavelength of the

most intense ultraviolet absorption peak from the calculated energy separation. Plot

the predicted wavelengths of maximum absorption against the number of double

bonds. Plot the experimental values on the same graph. They can be found in

Computer Project 6-2. Comment on the agreement between predicted and experi-

mental wavelength maxima, or the lack of it.

COMPUTER PROJECT 8-4 j SCF Dipole Moments

Unlike Huckel programs, SCF programs require an input geometry. Because charge

densities are calculated, it is a simple matter to combine the atomic coordinates

with the SCF charge densities (Chapter 7) to obtain a dipole moment. The charge

densities are progressively refined by recalculating the matrix elements during the

SCF calculation. In particular, alternation of long single and short double bonds is

taken into account (partially) by the calculation. Hence, we expect better agreement

between the calculated dipole moment and experiment than Huckel calculations

gave.

The implication of self-consistency is that the calculation is iterated until

calculated properties (strictly, one selected property) remain constant on renewed

iteration. Program SCF, however, stops calculating new matrix elements after 10

iterations. The assumption is that self-consistency will have been reached by then.

We shall also investigate the OPTIONS? prompt that was set to 0 in Computer

Project 8-3. At the prompt OPTIONS?, one has the choices 0, 1, 2, or 3. Note the I1

format. Taking the choices in reverse order, 3 permits one to input a value for

nuclear charge. This option will not be used here.

Entering 2 in response to the OPTIONS? prompt permits the operator to modify

the repulsion integrals gij . The matrix of gamma values is called a G matrix. On 2

having been entered, the system responds with the prompt NITEM? (I2) requesting

(in I2 format) how many matrix elements you want to change. This is followed by a

prompt I,J,GAM(I,J)? (2I2,F7.3), requesting the row, column, and value you

want to put into the lower triangular form of the G matrix. Modification of the G

matrix elements and of the F matrix elements (below) may be tried as an extension

to Part B of this project. Having fulfilled this option, one is free to exercise other

options until a 0 is entered to signify that there are no more desired changes.

An option input of 1 can be used to alter the F matrix called the core matrix.

Elements can be entered or altered off the diagonal or, for inclusion of heteroatoms,

by designating on-diagonal elements. The prompts and response formats for the F

matrix are similar to those of the G matrix. This option is similar to heteroatom

inclusion in HMO. We shall use option 1 in Part C below. After all options have

been entered, the final option is 0, which causes the calculation to be carried out. In
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Computer Project 8-3, this was the only option entry; hence, the parent molecule

itself was run.

Procedure

A. Calculate the dipole moment of methylenecyclopropene using the geometry

given in Chapter 7.

We found it convenient to take the central carbon atom as the origin of an x-y

coordinate system measured in angstroms. Take all the bonds in the s framework to

be about 1.4 Å long. A short exercise in high-school trigonometry gives the

coordinates of all the carbon atoms for entry into Program SCF. Is the SCF dipole

moment closer to the (interpolated) experimental value of 1-2 D than the Huckel

calculation?

B. Investigate the influence of geometry on the dipole moment by ‘‘stretching’’

and ‘‘compressing’’ the methylene bond, that is, calculate m at a methylene bond

length of 0.7 to 1.4 Å at intervals of 0.1 Å. Plot dipole moment vs. methylene bond

length from these results. Leave the rest of the geometry the same as it is in Part A.

What is the change in m in debyes per angstrom (D Å�1)? There is a discontinuity

between 1.4 and 1.5 Å. Why?

Investigate the F and G matrices using a methylene bond length of 1.5 Å. Is

something wrong with them? What is it? Why does this change appear? As an

extension to this part of the project, correct the F and G matrices using options 1

and 2. When altering off-diagonals of the G matrix, your entries will be in units of

b, that is, enter �1.0 to get an element of �2.37 eV. Is the dipole moment

improved? Is the problem completely solved? Why not?

C. Calculate the dipole moment of cyclopropenone using the OPTIONS input to

change the 1,1 matrix element to �2.0 for electronegative oxygen. Use the results

to infer the direction of the dipole moment toward or away from the oxygen

atom.

PROBLEMS

1. Calculate the integrals H12, H21, and H22 that go with the integral calculated in

Exercise 8-1.

2. Calculate the integrals S12, S21, and S22 that go with the integral calculated in

Exercise 8-2.

3. Express the determinant
�� 2 3
4 5

�� as a single scalar. Exchange the columns and

express the determinant as a single scalar again. What happens to the sign?

4. Given the linear combination

c ¼ c1xð1� xÞ2 þ c2x
2ð1� xÞ

analogous to Eq. (9-18), find H11 by the method used in Exercise 8-1.
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5. Given the linear combination in Problem 4, compute H12, H21, and H22.

6. Fill out the H matrix for the linear combination in Problem 4.

7. Determine S11, S12, S21, and S22 for the linear combination in Problem 4.

8. Fill out the secular determinant for the linear combination in Problem 4.

9. Find both roots of the secular equation

ð28� 4xÞð28� 4xÞ � ð7� 3xÞ2 ¼ 0

which arises from the expansion of the determinant in Problem 8.

10. From the lower root of the equation solved in Problem 8, determine the

eigenvalue (energy) for the linear combination in Problem 4. This eigenvalue is

analogous to the eigenvalue in Eq. (8-16).

11. Calculate E1 ¼ a2
2
� Zaþ abða2 þ 3abþ b2Þ=ðaþ bÞ3 for a ¼ 2:00 and

b ¼ 2:00. Calculate E(a,b) for a ¼ 2:00 and b ¼ 1:60. Which values of a
and b give better Slater orbitals?

12. Show that, under the constraint a ¼ b, abða2 þ 3abþ b2Þ=ðaþ bÞ3 ¼ 5
8
a

and E1 ¼ a2
2
� Zaþ 5

8
a. This amounts to reducing the number of minimization

(shielding) parameters from two to one in the Slater orbitals.

13. Using Program SCF for ethylene and 1,3,5-hexatriene, list the electron

repulsion integrals in the form g11, g12, and so on. Take the coordinates from

Figure 8-6. Try small variations in the atomic coordinates to see what their

influence is on gij.
14. How many iterations does it take to achieve self-consistency for the helium

problem treated (partially) in Exercises 8-3 and 8-4? What is the % discrepancy

between the calculated value of the first ionization potential and the experi-

mental value of 0.904 hartrees when the solution has been brought to self-

consistency?

15. In treating the energy of helium as in Exercises 8-3 and 8-4, make the

‘‘mistake’’ of entering Z ¼ 3:0 instead of Z ¼ 2:0. What do you get? Suppose

you make the ‘‘mistakes’’ of entering Z ¼ 4:0 and Z ¼ 5:0. What do you get?

16. Run an STO-2G determination of the energy of the hydrogen atom using the

coefficients

STO-2G ¼ C1e
�g1 r

2 þ C2e
�g2 r

2

g1 ¼ 1:5 g2 ¼ 0:2

C1 ¼ 0:4 C2 ¼ 0:7

What is the % difference between your result and the result using the

GAUSIAN stored parameters? What is the % difference between your result

and the exact result for the hydrogen atom, 0.500 hartrees? Make small

changes in Ci and gi and recalculate the energy. Is the energy a sensitive

function of the STO parameters Ci and gi?
17. Verify the result in Eq. (8-50) by finding the eigenvalues of matrix (8-49). What

are the eigenvector coefficients?
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18. There is considerable variation in the values assigned to the electron repulsion

integrals in Exercise 8.9.1. Salem (1966) points out that calculation using

Slater orbitals leads to

g11 ¼ 17 eV

g12 ¼ 9:0 eV

g13 ¼ 5:6 eV

and

b ¼ 2:3 eV

(Note that agreement with Pariser and Parr’s empirical value is better for g13
than for g11.) Use Salem’s values to calculate electron densities on the three

carbon atoms of the allyl anion for one iteration beyond the initial Huckel

values, as was done in Exercise 8.9.1. Comment on the results you get, as to the

qualitative picture of the anion, the influence of electron repulsion on the

charge densities, and agreement or lack of agreement with the results already

obtained with the Pariser and Parr parameters.

19. 2,3-Dimethyl-2-butene and 2,5-dimethylhexadiene have absorption peaks at

192 and 243 nm in the ultraviolet. Which peak corresponds to which

compound? What are the approximate HOMO-LUMO separations in electron

volts?

20. Write the STO-4G basis function as a sum of exponentials similar to Eq. (8-37)

but with 4 terms on the right.

21. What is the PPP-SCF dipole moment of methylenecyclobutene?

22. What is the PPP-SCF dipole moment of cyclobutenone?
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C H A P T E R

9
Semiempirical Calculations on

Larger Molecules

Semiempirical molecular orbital calculations have gone through many stages of

refinement and elaboration since Pople’s 1965 papers on CNDO. Programs like

PM3, which is widely used in contemporary research, are the cumulative achieve-

ment of numerous authors including Michael Dewar (1977), Walter Thiel (1998),

James Stewart (1990), and their coworkers.

The Hartree Equation

The cornerstone of semiempirical and ab initio molecular orbital methods is the

Hartree equation and its extensions and variants, the Hartree–Fock and Roothaan–

Hall equations. We have seen that the Hamiltonian for the hydrogen atom,

ĤH ¼ �1
2
r2 � 1

r
ð9-1Þ

can be expanded to forms like

ĤH ¼ �1
2
r2

1 � 1
2
r2

2 �
2

r1
� 2

r2
þ 1

r12
ð9-2Þ

Computational Chemistry Using the PC, Third Edition, by Donald W. Rogers

ISBN 0-471-42800-0 Copyright # 2003 John Wiley & Sons, Inc.

263



for the helium atom. In this form, there are two kinetic energy operators, one for

each of the two electrons, and three potential energy operators, two for electron-

nucleus attraction and one for interelectronic repulsion (Fig. 9-1). Strictly speaking,

the helium Hamiltonian should include the kinetic energy of the helium nucleus

ĤH ¼ �1
2
r2

He � 1
2
r2

1 � 1
2
r2

2 �
2

r1
� 2

r2
þ 1

r12
ð9-3Þ

although one rarely sees it written this way.

For a larger molecule with N nuclei and n electrons, we write

ĤH ¼ �
XN
I¼1

1
2
r2

I �
Xn
i¼1

1
2
r2

i �
XN
I¼1

Xn
i¼1

ZI

ri
þ
Xn
i¼1

Xn
j<i

1

rij
þ
XN
I¼1

XN
J<I

ZIZJ

RIJ

ð9-4Þ

where Eq. (9-4) is simply an extended form of Eq. (9-3). The indexes I and J are for

counting nuclei, i and j are for electrons, and Z is the nuclear charge. The double

sums are set up in the way that they are to avoid double counting. The term

ðZIZJÞ=RIJ for the potential energy of internuclear repulsion did not appear in

Eq. (9-3) because there is only one nucleus in the helium atom.

Under the Born–Oppenheimer approximation, the nuclei are assumed to be so

much more massive and slow moving than the electrons that their motions are

independent and can be treated separately. This permits the Hamiltonian in

Eq. (9-4) to be separated into two parts, one that refers to nuclei only

ĤHðRIÞ ¼ �
XN
I¼1

1
2
r2

I þ
XN
I¼1

XN
J<I

ZIZJ

RIJ

ð9-5Þ

and one that refers to electrons only

ĤHiðriÞ ¼ �1
2

Xn
i¼1

r2
i �

XN
I¼1

Xn
i¼1

ZI

r1
þ
Xn
i¼1

Xn
J<I

1

rij
ð9-6Þ

Later, when we use the nuclear Hamiltonian (9-5) to treat molecular vibrational

spectra, zero point energies, and heat capacities, it will include a term Eel to account

for the electronic binding energy holding the molecule together. We shall ignore

this part of the Hamiltonian for the time being.

Even when we are working solely with the electronic Hamiltonian (9-6), we

must remember that the nuclei do move, albeit relatively slowly, with respect to

e−
e−

2+

r2

r12

r1Figure 9-1 Schematic Diagram

of a Helium Atom.

264 COMPUTATIONAL CHEMISTRY USING THE PC



each other and that each new value of RIJ provides a new solution to the

Schroedinger equation. In a simple diatomic molecule, for example, we expect

that the locus of energies at different values of R will pass through a minimum at

the equilibrium bond length Req.

Returning to the electronic equation, we make the standard orbital assumption

that the molecular orbital is a product of single electron orbitals

cðr1; r2; r3; . . .Þ ¼ fðr1Þfðr2Þfðr3Þ . . . ð9-7Þ

Each orbital is calculated for one electron moving in an average field of the nuclei

and all other electrons. The field that influences electron 1 in helium, for example,

is

U1ðr1Þ ¼
ð
fðr2Þ 1

r12
fðr2Þdr2 ð9-8Þ

Under the single-electron approximation, Hamiltonian (9-6) becomes

ĤHðriÞ ¼ �1
2

Xn
i¼1

r2
i �

XN
I¼1

Xn
i¼1

ZI

r1
þ UðriÞ ð9-9Þ

where UðriÞ is the effective or average potential that electron i experiences from all

nuclei I and all electrons j 6¼ i. When this Hamiltonian is used in an eigenvalue

equation where ei designates an orbital energy, the result is the Hartree equation for
electron i

ĤHiðriÞfðriÞ ¼ eifðriÞ ð9-10Þ

For the helium atom ground state, which we shall later generalize to many

electron atoms and molecules,

EHe ¼
ð
cðr1Þcðr2Þ ĤHcðr1Þcðr2Þ dt ð9-11Þ

for normalized wave functions. The integral over all space dt in Eq. (9-11) is a

double integral over dr1 and dr2, and the Hamiltonian is given by Eq. (9-2), which

assumes the Born–Oppenheimer approximation with Z ¼ 2. The five terms in

Eq. (9-2) yield three integrals

ð
cðr1Þ �1

2
r2

1 �
2

r1

� �
cðr1Þ

ð
cðr1Þcðr1Þ dr1 ð9-12aÞð

cðr2Þ �1
2
r2

2 �
2

r2

� �
cðr2Þ

ð
cðr2Þcðr2Þdr2 ð9-12bÞ
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and ð ð
cðr1Þcðr2Þ 1

r12
cðr1Þcðr2Þ dr1 dr2 ð9-12cÞ

The first two integrals are simplified by the fact that orthonormal functions yieldð
cðr1Þcðr1Þ dr1 ¼ 1 ð9-13aÞ

and ð
cðr2Þcðr2Þ dr2 ¼ 1 ð9-13bÞ

Under this simplification, the three integrals (9-12a, b, and c) are called I1, I2, and

J12. Now,

EHe ¼ I1 þ I2 þ J12 ð9-14Þ
Using more flexible trial functions (polynomials in r1, r2, and r12 perhaps) for cðriÞ,
one can calculate very accurate energies for He by the SCF method. This gives us

confidence that we can make a valid generalization to larger systems.

Exchange Symmetry

Strangely enough, the universe appears to be comprised of only two kinds of

particles, bosons and fermions. Bosons are symmetrical under exchange, and

fermions are antisymmetrical under exchange. This bit of abstract physics relates

to our quantum molecular problems because electrons are fermions.

By Max Born’s postulate, the product of cðxÞ and its complex conjugate c�ðxÞ
times an infinitesimal volume element d3x is proportional to the probability that a

particle will be in the volume element d3x

cðxÞc�ðxÞd3x / prob ð9-15Þ

A two-particle wave function cðx1; x2Þ

cðx1; x2Þc�ðx1; x2Þd3x1d3x2 ¼ cðx2; x1Þc�ðx2; x1Þd3x1d3x2 ð9-16Þ

gives the probability that two particles will occupy volume elements d3x1 and d3x2
simultaneously.

For the probable location of two particles to be identical under the exchange

operation, x1x2 ! x2x1, the wave function before exchange must be exactly equal

to the wave function after exchange times a phase factor eiy

cðx1; x2Þ ¼ jcðx2; x1Þjeiy ð9-17Þ
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Equality between the 1, 2 wave function and the modulus of the 2, 1 wave function,

jcðx2; x1Þj, shows that they have the same curve shape in space after exchange as

they did before, which is necessary if their probable locations are to be the same.

The phase factor orients one wave function relative to the other in the complex

plane, but Eq. (9-17) is simplified by one more condition that is always true for

particle exchange. When exchange is carried out twice on the same particle pair, the

operation must produce the original configuration of particles

cðx1; x2Þ ! cðx2; x1Þ ! cðx1; x2Þ ð9-18Þ

There are only two ways this can be true. Either the phase factor is 1 or it is �1, that

is,

cðx1; x2Þ ¼ cðx2; x1Þ ð9-19aÞ

or

cðx1; x2Þ ¼ �cðx2; x1Þ ð9-19bÞ

The first allowable equation holds for bosons, and the second holds for fermions.

If we form a linear combination of wave functions for bosons,

�Boseðx1; x2Þ ¼ f1ðx1Þf2ðx2Þ þ f2ðx1Þf1ðx2Þ ð9-20Þ

everything is OK because, taking into account particle indistinguishability, this is

the same as

�Boseðx1; x2Þ ¼ f1ðx1Þf2ðx2Þ þ f2ðx1Þf1ðx2Þ ¼ 2½f1ðx1Þf2ðx2Þ� ð9-21Þ

but if we do the same thing with fermions,

�Fermiðx1; x2Þ ¼ f1ðx1Þf2ðx2Þ � f2ðx1Þf1ðx2Þ ¼ 0 ð9-22Þ

and we have lost the orbital. Wave functions can be identical for bosons but not for

fermions. This is the origin of the statement that no two fermions can occupy the

same orbital. It is a generalization of Pauli’s original exclusion principle for

electrons, which are fermions.

Electron Spin

All of our orbitals have disappeared. How do we escape this terrible dilemma? We

insist that no two electrons may have the same wave function. In the case of

electrons in spatially different orbitals, say, 1s and 2s orbitals, there is no problem,

but for the two electrons in the 1s orbital of the helium atom, the space orbital is the

same for both. Here we must recognize an extra dimension of relativistic space-time
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that adds a new quantum number s ¼ � 1
2
for what is commonly called the electron

spin.

If two electrons occupy the same space orbital but have different spins, we can

write

cð1; 2Þ ¼ 1 sað1Þ1 sbð2Þ ð9-23aÞ

indicating that the 1s parts of the orbital cð1; 2Þ are the same but the spins are

different, a for one-electron and b for the other. We can also write

cð2; 1Þ ¼ 1 sað2Þ1 sbð1Þ ð9-23bÞ
for the same configuration with the spins reversed.

These equations are legitimate spinorbitals, but neither is acceptable because

they both imply that we can somehow ‘‘label’’ electrons, a for one and b for the

other. This violates the principle of indistinguishability, but there is an easy way out

of the problem; we simply write the orbitals as linear combinations

c1 ¼ 1 sað1Þ1 sbð2Þ þ 1 sað2Þ1 sbð1Þ ¼ cð1; 2Þ þ cð2; 1Þ ð9-24aÞ

and

c2 ¼ 1 sað1Þ1 sbð2Þ � 1 sað2Þ1 sbð1Þ ¼ cð1; 2Þ � cð2; 1Þ ð9-24bÞ

Neither of these equations tells us which spin is on which electron. They merely say

that there are two spins and the probability that the 1, 2 spin combination is a, b is

equal to the probability that the 2, 1 spin combination is a, b. The two linear

combinations cð1; 2Þ � cð2; 1Þ are perfectly legitimate wave functions (sums and

differences of solutions of linear differential equations with constant coefficients

are also solutions), but neither implies that we know which electron has the ‘‘label’’

a or b.
Now that we have selected two wave functions that do not violate the principle

of indistinguishability, let us look at their exchange properties. The linear combina-

tions are

c1ð1; 2Þ ¼ cð1; 2Þ þ cð2; 1Þ ð9-25aÞ
and

c2ð1; 2Þ ¼ cð1; 2Þ � cð2; 1Þ ð9-25bÞ
On exchange,

c1ð2; 1Þ ¼ cð2; 1Þ þ cð1; 2Þ ¼ c1ð1; 2Þ ð9-26aÞ

which is acceptable for bosons but not for fermions. Similarly,

c2ð2; 1Þ ¼ cð2; 1Þ � cð1; 2Þ ¼ � cð1; 2Þ � cð2; 1Þ½ � ¼ �c2ð1; 2Þ ð9-26bÞ
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which is acceptable for fermions but not for bosons. Because electrons are

fermions, we are driven to the conclusion that the linear combination (9-24b) is

the only combination that properly describes the ground-state 1s orbital of helium.

This is true of higher atomic and molecular orbitals as well.

Slater Determinants

While idly dreaming over these equations (theoreticians call it ‘‘working’’) we

might happen to notice that the linear combination (9-24b) we have selected for

ground-state helium is the same as the expansion of a 2� 2 determinant

1 sað1Þ 1 sbð1Þ
1 sað2Þ 1 sbð2Þ
����

���� ¼ 1 sað1Þ1 sbð2Þ � 1 sbð1Þ1 sað2Þ ð9-27Þ

which, with slight notational changes, is Eq. (8-52). Might it be a general principle

that legitimate wave functions which obey the Pauli principle for electrons are

expanded determinants?

Consider lithium. We know from a century of empirical chemistry that one

electron in the active metal Li is very different from those in inert helium He.

Reasoning from the pattern of hydrogen energy levels developed by Bohr, we do

the reasonable thing and put one electron in the high-energy 2s orbital of Li and

leave the other two electrons in the 1s orbital. This agrees with the empirical

evidence that ground-state Li, like all alkali metals, loses one electron easily, but

only one, to go to the single positive ion Liþ.
Manipulating linear combinations for Li, one soon discovers that the only one

that satisfies the indistinguishability principle for electrons is the expansion of a

Slater determinant

1 sað1Þ 1 sbð1Þ 2 sað1Þ
1 sað2Þ 1 sbð2Þ 2 sað2Þ
1 sað3Þ 1 sbð3Þ 2 sað3Þ

������
������ ð9-28Þ

Moreover, there are 2 terms in the expansion of the Slater determinant for He but

there are 6 terms for Li. Looking at beryllium, we find 24 terms. This is the

beginning of the factorial series

1!; 2!; 3!; 4!; . . . ¼ 1; 2; 6; 24; . . .

When we square the wave function, we expect to find a probability P ¼ 1 over all

space, so the n! terms in the expanded determinant must be multiplied by the factor

1=
ffiffiffiffi
n!

p
to obtain the determinantal wave function normalized to 1.

In summary:

1. The top row of the Slater determinant shows no preference for any spinorbital

fi over any other; the electron may be in any one of them with equal
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probability. The same is true for electron 2 as shown in the second row, and so

on. The Slater determinant

cð1;2; . .. ;nÞ¼ 1ffiffiffiffi
n!

p
f1ðr1Það1Þ f1ðr1Þbð1Þ f2ðr1Það1Þ a2ðr1Þbð1Þ �� � fnðr1Það1Þ fnðr1Þbð1Þ
f1ðr2Það2Þ f1ðr2Þbð2Þ .. .

. . . . ..
f1ðrnÞaðnÞ f1ðrnÞbðnÞ ���

��������

��������
ð9-29Þ

‘‘mixes’’ probabilities for all electrons in all orbitals equally to find the

molecular orbital cð1; 2; . . . ; nÞ. The radius vector from the nucleus to the

electron ri in Eq. (9-29) will usually be represented by its scalar magnitude ri.

2. The Slater determinant changes sign on exchange of any two rows (electrons),

so it satisfies the principle of antisymmetrical fermion exchange.

3. In short, the Slater determinantal molecular orbital and only the Slater

determinantal molecular orbital satisfies the two great generalizations of

quantum chemistry, uncertainty (indistinguishability) and fermion exchange

antisymmetry.

4. We shall assume antisymmetrized orbitals from this point on when we write

cð1; 2; . . . ; nÞ.

Exercise 9-1

Show that the atomic determinantal wave function

cð1; 2Þ ¼ 1ffiffiffi
2

p 1 sað1Þ 1 sbð1Þ
1 sað2Þ 1 sbð2Þ
����

���� ¼ 1ffiffiffi
2

p 1 sað1Þ1 sbð2Þ � 1 sbð1Þ1 sað2Þ½ �

is normalized if the 1s orbitals are normalized.

Solution 9-1

In the notation of Eq. (9-29), f1ðr1Þ ¼ 1 s. If the 1s orbitals are normalized, then the

spinorbitals 1 sað1Þ, etc. are normalized because a and b are normalized. If we take just

the expanded determinant for two electrons without 1=
ffiffiffi
2

p
, the normalization constant,

and (omitting complex conjugate notation for the moment) integrate over all spaceð ð
cð1; 2Þcð1; 2Þdx1 dx2ð ð
½1 sað1Þ1 sbð2Þ � 1 sbð1Þ1 sað2Þ�½1 sað1Þ1 sbð2Þ � 1 sbð1Þ1 sað2Þ�dx1 dx2

we get a sum of four integrals

ð ð
1 sað1Þ1 sbð2Þ1 sað1Þ1 sbð2Þdx1 dx2 �

ð ð
1 sbð1Þ1 sað2Þ1 sað1Þ1 sbð2Þdx1 dx2

�
ð ð

1 sað1Þ1 sbð2Þ1 sbð1Þ1 sað2Þdx1 dx2 þ
ð ð

1 sbð1Þ1 sað2Þ1 sbð1Þ1 sað2Þdx1 dx2
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The spin eigenfunctions are orthogonalð
aa ds ¼

ð
bb ds ¼ 1

andð
ab ds ¼

ð
ba ds ¼ 0

over all spin space s.
Regrouping terms in the first integral,ð ð

1 sað1Þ1 sað1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1

1 sbð2Þ1 sbð2Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1

dx1 dx2 ¼ 1� 1 ¼ 1

because the spinorbitals are normalized. The same thing happens in integral 4. Regroup-

ing terms in the second integral,ð ð
1 sað1Þ1 sbð1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

1 sað2Þ1 sbð2Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

dx1 dx2 ¼ 0� 0 ¼ 0

because the spinorbitals are orthogonal, and the same thing happens to integral 3.

The sum of the four integrals is

1� 0� 0þ 1 ¼ 2

showing that the determinant by itself is normalized but it is not normalized to 1.

If we premultiply the determinant by 1=
ffiffiffiffi
n!

p ¼ 1=
ffiffiffi
2

p
in this case, it carries into each

term in the integral, giving

1ffiffiffi
2

p 1ffiffiffi
2

p 1� 0� 0þ 1½ � ¼ 1
2
� 0� 0þ 1

2
¼ 1

so that the full wave function 1ffiffi
2

p 1 sað1Þ 1 sbð1Þ
1 sað2Þ 1 sbð2Þ
����

���� is normalized to 1. (It is possible to

normalize to numbers other than 1, but this is rarely done and is not useful for our

purposes because we seek a probability of certainty (P ¼ 1) that a particle is somewhere

in all of space-time.)

Exercise 9-2

(This exercise is just a reminder to those who may need one.) How many permutations

(arrangements) can you make of three books, one red, one green, and one yellow, on your

bookshelf?

Solution 9-2

There are 3! ¼ 6 permutations,

RGB RBG GRB GBR BRG BGR
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Exercise 9-3

Generalize the solution of Exercise 9-1 to the case of a many-electron wave function

[Eq. (9-29)] yielding Pm permutations.

Solution 9-3

Each of the products 1 sað1Þ1 sbð2Þ and 1 sbð1Þ1 sað2Þ is a different permutation of

electrons over orbitals, call them P1 and P2, respectively. Resuming conventional complex

conjugate notation, call the permutations over the complex conjugate c�ð1; 2Þ Q1 and Q2,

respectively. The integration
Ð Ð

c�ð1; 2Þcð1; 2Þdx1dx2 can be writtenð ð
½Q1 � Q2�½P1 � P2�dt

where dt designates integration over all space available to the system. This integral

produces a sumð ð
Q1P1 dt�

ð ð
Q2P1 dt�

ð ð
Q1P2 dtþ

ð ð
Q2P2 dt

After regrouping, we found that the first and fourth integrals with P and Q the same

ðQ1P1;Q2P2Þ integrated to 1 but the second and third integrals ðQ2P1;Q1P2Þ yielded 0.

Following that, the sum of the double integrals was multiplied by 1=
ffiffiffiffi
n!

p ¼ 1=2 to see to it
that cð1; 2Þ was properly normalized to 1, not some other number.

In the general case, expanding determinant (9-29) gives

cð1; 2; . . . ; nÞ ¼
X

cP

ð
� � �
ð
f1ðP1Þf2ðP2Þ . . .fMðPMÞdt

where M ¼ n! and cP is the number of exchanges necessary to go from P1 to some other

permutation. For example, for permuting books, RGB ! GRB ! GBR involves two

exchanges. The number of exchanges determines the sign of each term in the sum: the

term is positive if cP is even and negative if it is odd.

The complex conjugate of cð1; 2; . . . ; nÞ can be written

c�ð1; 2; . . . ; nÞ ¼
X

cQ

ð
� � �
ð
f�
1ðQ1Þf�

2ðQ2Þ . . .f�
MðQMÞdt

whereupon the multiple integralð
� � �
ð
c�ð1; 2; . . . ; nÞcð1; 2; . . . ; nÞdt

produces a sum of possibly very many terms

X
cP
X

cQ

ð
� � �
ð
½f�

1ðQ1Þf�
2ðQ2Þ . . .f�

MðQMÞ�½f1ðP1Þf2ðP2Þ . . .fMðPMÞ�dt

Those terms with identical P and Q integrate to 1 and those with nonidentical P and Q

integrate to 0. There are n! nonzero integrals yielding a sum of n! terms. The normal-

ization factor is 1=
ffiffiffiffi
n!

p
for permutation P and 1=

ffiffiffiffi
n!

p
for permutation Q. This gives

ð1= ffiffiffiffi
n!

p Þð1= ffiffiffiffi
n!

p Þn! ¼ 1.
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The Hartree--Fock Equation

In later work, both Hartree and, independently, Fock (1930) used antisymmetrized

orbitals in what we now know as the Hartree–Fock equation, an extension of

the Hartree equation. When we treat many-electron atoms or molecules by the

variational method using antisymmetrized orbitals, a new term, Kij, appears in the

energy equation, Eq. (9-14)

Kij ¼
ð ð

f�
i ðr1Þf�

j ðr2Þ
1

r12
fiðr2Þfjðr1Þdr1dr2 ð9-30Þ

due to the possibility of exchanging electrons between different spinorbitals fi

and fj.

Picking the helium atom again as our prototypical system (Atkins and Friedman,

1997),

E ¼ I1 þ I2 þ J12 � K12 ð9-31Þ

in the excited state where I is the one-electron orbital energy and J is the Coulomb

energy. The new integral K12 is similar to J12 in Eqs. (9-12c) and (9-14) except that

the electrons have been exchanged ðr1 ! r2 and r2 ! r1Þ on the right of integral

(9-30). The integral Kij is the exchange integral corresponding to the linear

combination

c�ðr1; r2Þ ¼
1ffiffiffi
2

p f�
1ðr1Þf�

2ðr2Þ � f1ðr2Þf2ðr1Þ ð9-32Þ

for He in the excited state, Heexc. It appears on antisymmetrization of the atomic

orbital; therefore, it is a quantum mechanical term, as distinct from I and J, which

are classical. The � sign shows that the exchange integral can enhance or diminish

stability. In helium, the magnitude of K is about 1
10
that of the excitation energy from

the 1s orbital to the 2s orbital (Levine, 1991) (Fig. 9-2).

To see how and under what conditions stability is enhanced or diminished, we

need to consider the symmetry of the orbital (9-32). Electrons in the antisymmetric

orbital c� have a zero probability of occurring at the node in c� where r1 ¼ r2.

Electron mutual avoidance of the node due to spin correlation reduces the total

energy of the system because it reduces electron repulsion energy due to charge

Hartree }K

}K
Hartree-Fock

2s
E

ψ
Figure 9-2 The Influence of Particle

Exchange on the Energy of Heexc.
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correlation. Do not confuse the two correlations; spin correlation is a fundamental

characteristic of bosons and fermions. Chemists call it the Pauli exclusion principle.

It operates independently of charge correlation, but it influences the potential

energy of charge correlation according to whether electrons are close together or far

apart due to their spin. When the electrons in Heexc avoid each other due to spin

correlation, the energy is decreased

E ¼ I1 þ I2 þ J12 � K12 ð9-33aÞ

When electrons attract each other, as in the symmetric spin case, the total energy is

increased due to increased charge repulsion

E ¼ I1 þ I2 þ J12 þ K12 ð9-33bÞ

The secular determinant in the Hartree–Fock procedure is

H11 � E1 H12

H21 H22 � E2

����
���� ¼ 0 ð9-34Þ

assuming S ¼ I. Therefore, by the method given in the section on the secular matrix

in Chapter 6, the elements of the determinant must be

H11 ¼ H22 ¼ I1 þ I2 � J12 ð9-35Þ

and

H12 ¼ H21 ¼ K12 ð9-36Þ

to obtain the required roots

Ei ¼ I1 þ I2 þ J12 � K12

When an antisymmetrized orbital is used in place of a single orbital for many-

electron systems, the energy of the ground state is ‘‘better,’’ that is, lower, than the

Hartree energy by the exchange energy. This is consistent with (but does not prove)

the qualitative idea that replacing an orbital with a new orbital that better represents

the physics of the system lowers its calculated energy. In this case, the antisym-

metrized orbital better represents the true orbital (even though we do not know

exactly what that is) because the Pauli principle is a valid part of the physics of

electron interaction.

For the record, we should point out that the equations developed in this chapter

are extensions of the nonrelativistic, time-independent Schroedinger equation. The

Pauli principle arises from a relativistic treatment of the problem, but we shall

follow the custom of most chemists and accept it as a postulate, ‘‘proven’’ because

it gives the right answers.
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In the general case of an electronic Hamiltonian for atoms or molecules under

the Born–Oppenheimer approximation,

ĤHiðriÞ ¼ �1
2

Xn
i¼1

r2
i �

Xn
i¼1

ZI

r1
þ
Xn
i¼1

Xn
J<I

1

rij
ð9-37Þ

use of the variational method with antisymmetrized orbitals

E ¼
ð
� � �
ð
c�ð1; 2; . . . ; nÞ

X
ĤHiðriÞcð1; 2; . . . ; nÞdt ð9-38Þ

produces very many integrals, but most of them drop out as they did in Exercises

9-1 and 9-3. Two classes of integrals arise from two groupings of terms in the

Hamiltonian for a many-particle system, one from a sum of one-electron terms

X
ĤHiðriÞ ¼

X
�1

2
r2

i �
Z

ri

� �

and the other from a sum of two-electron terms

X
ĤHiðriÞ ¼

X 1

rij

In the first case, permutations P and Q must be identical for nonzero terms in the

antisymmetrized sum just as they were in Exercise 9-3, leaving onlyð
fiðriÞ �1

2
r2

i �
Z

ri

� �
fiðriÞdt ð9-39Þ

as the integral that contributes to the energy of the system. This integral is given the

symbol Ii.

In the second case

E ¼
ð
� � �
ð
c�ð1; 2; . . . ; nÞ

X 1

rij
cð1; 2; . . . ; nÞdt ð9-40Þ

the operator is only a premultiplicative factor 1=rij, so evaluation of the multiple

integral is again similar to the normalization in Exercise 9-3. Terms remain under

the condition P ¼ Q, leaving double integrals in place of multiple integralsð ð
f�
i ðriÞf�

j ðrjÞ
1

rij
fiðriÞfjðrjÞdt ð9-41Þ

where integration is over all space ri and rj. We give this integral the name Jij.

SEMIEMPIRICAL CALCULATIONS ON LARGER MOLECULES 275



The arbitrary labels i and j that we use in our equations have no influence on the

physics of the real system, so the labels fj and fi are just as valid as the labels fi

and fj for a two-electron interaction. Thus, in addition to the set of Jij integrals for

which P ¼ Q, we get a nonzero set of double integrals contributing to the basis set

in which P and Q are related by a one electron exchangeð ð
fiðriÞfjðrjÞ

1

rij
fiðrjÞfjðriÞdt ð9-42Þ

This integral is called Kij. If we sum over doubly occupied orbitals, the I and J

integrals contribute twice to the energy of each orbital, once for each electron but

the Kij integral contributes only once because there can be only one exchange of

two electrons; hence the ratio of 2:1 for integrals I and J versus the integral K. Also

the Kij integral is negative because it arises from a single exchange.

In summary, the Hartree–Fock equation for antisymmetrized orbitals is written

E ¼ 2
XN

Ii þ
XN
i¼1

XN
j¼1

ð2Jij � KijÞ ð9-43Þ

where

Ii ¼ f�
i ðriÞ �1

2
r2

i �
Z

ri

� �
fiðriÞdt ð9-44Þ

Jij ¼
ð ð

f�
i ðriÞf�

j ðrjÞ
1

rij
fiðriÞfjðrjÞdt ð9-45Þ

and

Kij ¼
ð ð

f�
i ðriÞf�

j ðrjÞ
1

rij
fiðrjÞfjðriÞ dt ð9-46Þ

Note that integrals can be referred to as energies in this context because of

Eq (9-38).

The Fock Equation

By this time, we have introduced so many approximations and restrictions on our

wave function and energy spectrum that is no longer quite legitimate to call it a

‘‘Schroedinger equation’’ (Schroedinger’s initial paper treated the hydrogen atom

only.) We now write

Fc ¼ ec ð9-47Þ
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as the Hartree–Fock equation. One-electron orbitals obey the equation

F̂Fifi ¼ eifi ð9-48Þ

where F̂Fi is called the Fock operator.

The Fock operator

F̂F ¼ f̂fi þ
X
j

ð2ĴJj � K̂KjÞ ð9-49Þ

is made up of a one-electron part

f̂fi ¼ � 1
2
r2

i �
Z

ri
ð9-50Þ

and two two-electron parts

ĴJjðr1Þ ¼
ð
f�
j ðr2Þ

1

r12
fjðr2Þdt ð9-51Þ

K̂Kjðr1Þ ¼
ð
f�
j ðr2Þ

1

r12
fiðr2Þdt ð9-52Þ

Note that ĴJjðr1Þ and K̂Kjðr1Þ are operators that go to make up the Fock operator.

They operate on functions. One often sees the notationð
f�
j ðr2Þ

1

r12
fjðr2Þdtfiðr1Þ ð9-53Þ

and ð
f�
j ðr2Þ

1

r12
fiðr2Þdtfjðr1Þ ð9-54Þ

or something similar, used to show their operator nature. The notation ĴJjðr1Þ and
K̂Kjðr1Þ emphasizes that the Fock operators are functions of the (probable) locations

of the electrons, which are known only through their orbitals. The orbitals, in turn,

are obtained through the secular matrix of Fock operators. Once again, we arrive at

a circular calculation starting with a set of assumed orbitals, calculating the

elements of the F matrix leading to a new set of orbitals, and so on to self-

consistency.

Having the Slater atomic orbitals, the linear combination approximation to

molecular orbitals, and the SCF method as applied to the Fock matrix, we are in a

position to calculate properties of atoms and molecules ab initio, at the Hartree–

Fock level of accuracy. Before doing that, however, we shall continue in the spirit of

semiempirical calculations by postponing the ab initio method to Chapter 10 and

invoking a rather sophisticated set of approximations and empirical substitutions
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that permit calculation of molecular properties with great computational efficiency.

The semiempirical methods so arrived at are probably the most widespread

research-level molecular orbital calculations carried out in both academic and

industrial laboratories.

The Roothaan--Hall Equations

Application of the variational self-consistent field method to the Hartree–Fock

equations with a linear combination of atomic orbitals leads to the Roothaan–Hall

equation set published contemporaneously and independently by Roothaan and

Hall in 1951. For a minimal basis set, there are as many matrix elements as there are

atoms, but there may be many more elements if the basis set is not minimal.

The LCAO approximation for the wave functions in the Hartree–Fock equations

fi ¼
X

aijwj ð9-55Þ

which is essentially Eq. (7-22), gives the Roothaan equations

Fi

X
aijwj ¼ ei

X
aijwj ð9-56Þ

where the wj are LCAO basis functions. In the more general case the basis functions

need not be atomic orbitals. The Roothaan equations are simultaneous equations in

the minimization parameters aij. The normal equations are

ðF11 � S11e1Þa11 þ ðF12 � S12e1Þa12 þ ðF13 � S13e1Þa13 þ � � � þ ðF1 n � S1 ne1Þa1 n ¼ 0

ðF21 � S21e2Þa21 þ ðF22 � S22e2Þa22 þ ðF23 � S23e2Þa23 þ � � � þ ðF2 n � S2 ne2Þa2 n ¼ 0

..

. ..
.

ðFn 1 � Sn 1enÞan 1 þ ðFn 2 � Sn 2enÞan 2 þ ðFn 3 � Sn 3enÞan 3 þ � � � þ ðFnn � SnnenÞann ¼ 0

ð9-57Þ

These are just the secular equations shown in equation set (7-2) with F in place of H

and the ‘‘stacked matrix’’ Eq. (7-6) of eigenvectors in place of a single eigenvector.

In matrix notation

ðF11�S11ejÞ ðF12�S12ejÞ ��� ðF1n�S1nejÞ
ðF21�S21ejÞ ���

� � � . .
.

ðFn1�Sn1ejÞ ðFnn�SnnejÞ

0
BBB@

1
CCCA

a11 a12 � � � a1n
a21 a22 a2n

..

. . .
.

an�1n

an1 ann�1 ann

0
BBB@

1
CCCA¼0 ð9-58Þ

that is,

ðF� SeÞA ¼ 0 ð9-59Þ
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or

FA ¼ SAe ð9-60Þ

which is the same as Eq. (7-17) except that the Fock matrix replaces the Huckel

matrix. Given the Fock operator [(Eq. (9-49)] and a basis set, we can calculate the

Fock matrix elements Fij ¼
Ð
fiF̂Ffjdt and the overlap elements Sij ¼

Ð
fifjdt. An

initial approximate eigenvalue spectrum e, which might come from a PPP-SCF

calculation, gives us everything we need to calculate ðF� SeÞ; hence, we can solve

Eq. (9-59) for the matrix of eigenvectors A. Matrix A gives us the coefficients for

new linear combinations fi;fj, new Fock operators, a Fock matrix for the next

iteration, which leads to an improved orbital energy spectrum, and so on.

The Roothaan–Hall equation set (9-57) is often written in the notation

XN
n¼1

ðFmn � eiSmnÞcni ¼ 0 ð9-61Þ

leading to the one-orbital energies ei where Fmn is a Fock matrix element and Smn is

an element in the overlap matrix. These equations become zero when the

determinant Fmn � eiSmn
�� �� becomes zero because, in general, cn i 6¼ 0. (For a brief,

readable account of the development of this equation, see Zerner, 2000.)

The Semiempirical Model and Its Approximations:
MNDO, AM1, and PM3

If we assume that S ¼ I (which is not true in general), the matrix form of the Fock

equation can be written

FA ¼ AE ð9-62Þ

where A, is the matrix of molecular orbital coefficients, having elements aij in the

basis set expansion. The assumption that S ¼ I is not necessary, but it saves on

computer resources (time and memory). This is the neglect of diatomic differential

overlap (NDDO) simplification. If the NDDO approximation is made for two-

center terms in the Fock matrix elements, it must hold for 3- and 4-center terms.

This approximation is made in all three MOPAC methods, MNDO, AM1, and PM3.

(The names are trivial: Modified Neglect of Differential Overlap, Austin (TX)

Method 1, and Parameterized Method 3.)

Once the format of the Fock matrix is known, the semiempirical molecular

problem (and it is a considerable one) is finding a way to make valid approxima-

tions to the elements in the Fock matrix so as to avoid the many integrations

necessary in ab initio evaluation of equations like Fij ¼
Ð
fiF̂Ffjdt. After this has

been done, the matrix equation (9-62) is solved by self-consistent methods not

unlike the PPP-SCF methods we have already used. Results from a semiempirical

SEMIEMPIRICAL CALCULATIONS ON LARGER MOLECULES 279



calculation include or may include the optimized molecular geometry, the energy

values of all the quantum levels in the system, charge densities and bond strengths,

electronic and vibrational spectral transitions, and derived information like ioniza-

tion potentials and dipole moments.

For the purpose of approximating and parameterizing the numerous integrals

necessary to obtain Fij, the energies representing electronic and nuclear interactions

are broken up into categories. Valence electrons are separated from nonvalence

electrons. Nonvalence electrons are taken to be part of a core of nuclei and

electrons influencing valence electrons through their classical Coulombic force

field. Further semiempirical approximations to the elements Fij may be made in

many ways.

A widely used protocol (Thiel, 1998) is as follows:

1. A specific carbon atom attracts ‘‘its own’’ electron by what is called a one-

center, one-electron interaction.

2. Valence electrons are repelled by other electrons in valence orbitals of the same

carbon atom, a one-center, two-electron repulsion. These interactions are often

parameterized with spectroscopic transition energies.

3. Two-center, one-electron resonance (bonding) is treated essentially as in PPP

theory; two-center electronic repulsion is treated classically (as a Coulombic

repulsion). Two-center repulsion integrals represent the energy of interaction

between the charge distribution on different atoms. Based on a classical model

of charge interaction, Dewar has obtained a semiempirical function of distance

f ðRijÞ between point charges i and j where the distance Rij is determined from

the internuclear distance between atoms and the function is fitted to give correct

values in the limits of R ¼ 0 and R ¼ 1.

4. One-electron-core integrals are parameterized classically.

5. Core-core interactions are also parameterized classically.

The result is an essentially classical model with the exception of the two-center,

one-electron resonance integral, which is of quantum mechanical origin. Although

the parameterization is dominated by classical interactions, it is used within the

quantum mechanical framework of the Fock matrix. Thus MNDO, AM1, and PM3

are legitimate quantum mechanical molecular orbital methods with a strong influx

of classical empirical parameterization. Typically, a molecular orbital package

(MOPAC) contains the parameters necessary for each class of calculation, MNDO,

AM1, or PM3. Such a package is said to contain the MNDO, AM1, and PM3

Hamiltonians (strictly, Fock operators), which are called up with the approp-

riate keyword as the first line of the input program. The point here is that the

three methods are really the same except for different parameterizations. They

produce the same information, but the computed numerical values they arrive at

are different.

Beyond these approximations as to what the actual integrals in the F matrix are,

in some more recent semiempirical methods further adjustment of any or all of the

elements of the F matrix is used to bring the calculated results into the best possible

agreement with standard thermochemical results, largely �f H
298. The number of

parameters per element is 5–7 in MNDO and 18 in PM3 (Thiel, 1998).
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Methods parameterized with thermochemical �f H
298 produce, of course, �f H

results at 298 K, as distinct from ab initio results, which are total energies at 0 K,

E0. Results at 298 K are the data most useful in practical applications, for example,

in the determination of standard free energy changes of reaction and equilibrium

constants. Having the data in immediately useful form can be merely a convenience

or, in some cases, a real advantage, especially if one does not believe that calculated

heat capacity data necessary for correction from �f E
0 to �f H

298 are reliable.

Exercise 9-4

Use MNDO, AM1, and PM3 (MOPAC, ccl.net) to determine the ionization potential of

the hydrogen atom

H ! Hþ þ e�

Note that this exercise refers to the standard MOPAC implementation, which does not

have a graphical user interface (gui).

Solution 9-4

The input file for this calculation consists of only four lines, two of which may be blank

MNDO doublet

h

The first line specifies the method and gives the spin multiplicity for one electron

ðnþ 1Þ ¼ 2. The second line may be blank or it can be used for an identifying message

like

Semiempirical treatment of the hydrogen atom

This identifier will be echoed in the output file. The third line is a spacer or a second

comment line, and the fourth line identifies the atom (in either upper or lower case).

The MOPAC executable can be run from DOS by using the command mopac.
Respond to the prompt asking for an input file with the full input filename,

including the file extension if any. For example, this might be h.txt if you used a

text editor to create the input file. Some systems show only the filename without the

extension but you still need the extension for MOPAC. The dir command in DOS

will give you the full filename. Alternatively, you can use rename h.txt h to obtain

the input file h with no .txt extension. After editing an input file, for example,

changing the keyword from MNDO to AM1, you will need a new filename, say, h1,

to avoid redundancy with the output files created during the MOPAC run.

Redundant files are not normally erased by a new run.

The MNDO output from this four-line input file contains the ionization energy

along with other information (Fig. 9-3). The results for the three methods

are MNDO: 11.91, AM1: 11.40, and PM3: 13.07 eV. The experimental value is

13.61 eV.
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Exercise 9-5

Find the ground-state energy and the equilibrium bond distance (length) for the hydrogen

molecule H2 with the Arguslab implementation of MOPAC (arguslab.com) and the AM1

Hamiltonian. The Arguslab implementation of MOPAC has a gui.

Solution 9-5

Build C2 by clicking on File!new and following the steps in the help tutorial (right

click, drag, control right click). Getting used to a new molecular structure package takes

some time. Don’t be discouraged if you have to return to the tutorial frequently at first.

When your C2 molecule appears correctly in the window, go to selection mode

(arrow). Change the default sp3 C atoms to H by right clicking on one atom

followed by a left click on change atom!H[s]!H_hydrogen. Repeat for the

other atom. Left click calculation!energy!AM1!OK, followed by calcula-

tion!run. If a Save a Molecule screen opens up, save under a unique filename

like your initials. You will probably get something like E ¼ � �0:7 au (hartrees),

but this depends on the bond length, which hasn’t been optimized yet.

Go through the same run routine, clicking calculation!optimize geometry etc.

Your initial geometry may not converge. If it doesn’t, use the geometry cleaning

tool at the upper right of the arguslab window. Optimize the geometry again. (The

geometry cleaning tool isn’t exact.) After any run, you can get bond information by

right clicking on the bond in the molecular diagram, which gives a series of options

including Bond Info. Left clicking on Bond Info shows you the bond length ¼
0.7081 Å. The complete information file on the run is obtained by left clicking

Edit! latest output file.

Repeat the energy calculation (calculation!energy!AM1!OK, followed

by calculation!run) at the optimum geometry. You should get �1.011 hartrees

(Fig. 9-4).

Exercise 9-6

Repeat Exercise 9-5 using the Arguslab package and the MNDO and PM3 Hamiltonians.

Determine the total energy of atomization to the separated stationary atoms and electrons

in hartrees.

HEAT OF FORMATION =  52.102000 KCAL
ELECTRONIC ENERGY = –11.906076 EV
CORE–CORE REPULSION =    .000000 EV
DIPOLE =    .000000 DEBYE
NO. OF FILLED LEVELS =   0
AND NO. OF OPEN LEVELS =   1
IONIZATION POTENTIAL =  11.906276 EV
MOLECULAR WEIGHT =   1.008
SCF CALCULATIONS =   2
COMPUTATION TIME =    .880 SECONDS

Figure 9-3 Partial Output from the MNDO Calculation of the Ionization Potential of

Hydrogen.
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Solution 9-6

MNDO AM1 PM3 experiment

r, Å 0.663 0.708 0.699 0.741

E, hartrees �1.040 �1.011 �1.148 �1.174

The Programs

MOPAC is available from many commercial and freeware sources. Among the

commercial sources are Serena Software and Arguslab (See Appendix Sources). A

freeware source is ccl.net (http://ccl.net/cca/software/MS-DOS/mopac_for_dos/

index.shtml). Quantum Chemistry Program Exchange (QCPE) is between com-

mercial and freeware sources because it charges a small fee for handling and

software storage. MOPAC underwent a long evolution up to MOPAC 6.0 under

government financial support; hence, it is public domain software. We shall

distinguish between standard MOPAC, which does not have a gui, and commercial

MOPAC, which usually does. (What you pay for is the gui. Writing your own gui is

beyond the capabilities of most nonspecialists.)

The standard MOPAC 6.0 implementation has an identifier similar to the

following:

**************************************************************************

** FRANK J. SEILER RES. LAB., U.S. AIR FORCE ACADEMY, COLO. SPGS., CO. 80840 **

**************************************************************************

AM1 CALCULATION RESULTS

**************************************************************************

* MOPAC: VERSION 6.00 CALC’D. - - etc.

********************************************************************

Commercial PCMODEL (Serena) does not include MOPAC as part of the

package, but Serena makes it available as a collateral program. PCMODEL has a

gui that permits MM optimization of a molecular geometry followed by a save

option inmopac format that saves the file as filename.mop in the correct format for

input to standard MOPAC 6.0. This option is virtually essential for molecules larger

than four or five heavy (nonhydrogen) atoms, which would be daunting to input by

hand.

************** Final Geometry *************

H 1.18325673 0.00000000 0.00000000 1
H 1.89132627 0.00000000 0.00000000 1

Figure 9-4 Cartesian (x; y; z) Geometric Output from Arguslab AM1 Calculation. The

difference between the coordinates on the x-axis is 0.708 angstroms.
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COMPUTER PROJECT 9-1 j Semiempirical Calculations on

Small Molecules: HF to HI

A. Repeat Exercises 9-5 and 9-6 for the hydrogen halides HF to HI using the

Arguslab package. To identify an atom, right click on it and left click on Atom
Info. To change an atom, do the same thing except that you left click on change

atom. You will find that several calculations give you the error message

Unsupported Element, indicating that the parameters have not been

included for that particular calculation. Merely put a * in your table when

this happens. You will get at least one calculation (PM3) for each hydride. You

should have 4 tables with 3 columns each.

B. Make tables similar to the one in Part A for the dihydrides of the group 6

elements, starting with oxygen, H2O and going to selenium. Include the simple

bond angle of the dihydride, for example, H��O��H ¼ 107.6 (PM3), with the

geometric result. To find a simple angle, hold down shift, left click on atoms H,

O, and H, left click on Monitor!Angle.

C. Find the MNDO, AM1, and PM3 estimates of the dipole moment and �f H
298

of formaldehyde H2O����O. The calculation is run just like a geometric

optimization, but be sure the Dipole moment box is checked before the

program run.

COMPUTER PROJECT 9-2 j Vibration of the Nitrogen Molecule

Using MOPAC and the MNDO Hamiltonian, calculate the energy and equilibrium

bond length of N2 to 4 significant figures. The input file is

mndo

nitrogen

N

N 1.1 1 1 0 0

where the value 1.1 in the fifth line of the file is a starting, approximate, value for

the equilibrium bond length. The third and fourth entries in that line are a

designator that the second N atom is connected to atom 1 (also N) and a switch

saying do optimize.

Increase the bond length of the molecule by 0.001 Å and recalculate the energy

at this fixed value. Fixing a bond length at the value given in the second entry of the

fifth line of the input file (preventing optimization to the equilibrium bond length) is

brought about by changing the switch from 1 to 0 in the fourth entry of that line.

Leaving a blank in place of 1 would accomplish the same purpose, but it is good

practice to enter 0 as a placeholder. Increase the bond length from 1.100 to 1.110 in

steps of 0.001 Å. Plot the energy E, calculated by MNDO, as a function of bond

length r. What is the mathematical function you observe? Is this consistent

with what you know about the harmonic oscillator? According to MNDO, is it

reasonable to regard the N��N bond as a harmonic (Hooke’s law) spring? Print

out the input data to your E vs. r plot and use the file to answer the questions

below.
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Questions

Suppose that we agree to regard the N��N molecule as a classical (nonquantum)

harmonic oscillator and we stipulate that each N atom makes a maximum excursion

away from its equilibrium bond length of 0.006 Å during each vibration.

1. What is the minimum atomic speed? Where in their excursion do the atoms

reach their minimum speed?

2. Where in their excursion is the maximum atomic speed attained?

3. What is the interatomic separation at the minimum potential energy? For

convenience, define the minimum potential energy of the system as zero at the

minimum of the potential well.

4. Can the two-mass N��N system be regarded as a one-mass system having a

reduced mass m? If so, what is m?
5. What is the maximum potential energy of the N��N system as defined?

6. What is the maximum kinetic energy of the N��N system as defined?

7. Calculate

(a) The maximum excursion rmax � r0 in meters.

(b) The reduced mass m in kilograms.

(c) The maximum potential energy per N2 molecule e in joules.

(d) The force constant k in newtons per meter.

(e) The force on the virtual oscillator of mass m at excursion rmax.

(f) The frequency of oscillation in hertz.

(g) The period of oscillation in seconds.

(h) The frequency of oscillation in cm
�1

.

8. How long does it take for each N atom to get from its minimum speed to its

maximum speed?

9. What is the maximum speed of the nitrogen atoms as they move toward and

away from one another?

10. What is the speed of a nitrogen atom as it passes through the point

r ¼ 1:106?

Normal Coordinates

The ‘‘neglected’’ part of the molecular Schroedinger equation, after making the

Born–Oppenheimer separation in the first section of this chapter, is

ĤHðRIÞ ¼ �
XN
I¼1

1
2
r2

I þ
XN
I¼1

XN
J<I

ZIZJ

RIJ

þ Eel

where Eel is negative (binding). It governs motions of the nuclei, in particular,

vibrational motion. Like any other Hamiltonian, the nuclear Hamiltonian can, in

principle, be separated into a sum of partial Hamiltonians leading to a sum of

energies and a product of wave functions. Expressed in arbitrary coordinates,
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separation of the Hamiltonian is not feasible because of the cross terms it contains,

but expressed in terms of its normal coordinates, the Hamiltonian can be separated.

We shall concentrate on the potential energy term of the nuclear Hamiltonian

and adopt a strategy similar to the one used in simplifying the equation of an ellipse

in Chapter 2. There we found that an arbitrary elliptical orbit can be described with

an arbitrarily oriented pair of coordinates (for two degrees of freedom) but that we

must expect cross terms like 8xy in Eq. (2-40)

5x2 þ 8xyþ 5y2 ¼ 9

If, instead of making an arbitrary choice of the coordinate system, we choose

more wisely, the ellipse can be expressed more simply, without cross terms

[Eq. 2-43)]

x02 þ 9y02 ¼ 9

The new coordinates are found by rotation of the old ones in the x-y plane such that

they lie along the principal axes of the ellipse.

Here we shall consider a homonuclear diatomic molecule restricted to a one-

dimensional x-space (Starzak, 1989) (Fig. 9-5). Although there is only one space

coordinate, there are two degrees of freedom. The whole molecule can undergo

motion (translation), and it can vibrate.

The force on one nucleus due to stretching or compressing the bond is equal to

the force constant of the bond k times the distance between the nuclei ðx2 � x1Þ. It is
equal and opposite to the force acting on the other nucleus, and it is also equal to

the mass times the acceleration €xx by Newton’s second law (see section on the

harmonic oscillator in Chapter 4). The equations of motion are

m€xx1 ¼ �kðx1 � x2Þ ¼ �kx1 þ kx2

m€xx2 ¼ kðx1 � x2Þ ¼ kx1 � kx2

or, in matrix form,

m 0

0 m

� �
€xx1
€xx2

� �
¼ �k k

k �k

� �
x1
x2

� �

There is no force constant for translation because it encounters no opposing force.

m2m1x1

x2

Figure 9-5 A Diatomic Molecule. The molecule can undergo translation without changing

the distance (x2 � x1), or it can undergo vibration, in which (x2 � x1) changes, or it can

undergo translation while vibrating.
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The m matrix is already diagonalized. Take the masses and the force constant to

be 1 arbitrary unit for simplicity and concentrate on the force constant matrix. We

can diagonalize the k matrix

K :¼ �1 1

1 �1

� �

eigenvals ðKÞ ¼ �2

0

� �
eigenvecs ðKÞ ¼ 0:707 0:707

�0:707 0:707

� �
We have found the principal axes from the equation of motion in an arbitrary

coordinate system by means of a similarity transformation S�1KS (Chapter 2) on

the coefficient matrix for the quadratic containing the mixed terms

K :¼ �1 1

1 �1

� �
S :¼ :707 :707

�:707 :707

� �

S�1 ¼ 0:707 �0:707

0:707 0:707

� �

S�1 � K � S ¼ �2 0

0 0

� �

The equations of motion in the transformed coordinates are

m€xx1 ¼ �2kx1

m€xx2 ¼ 0

The first equation, for vibration, is

€xx ¼ � 2k

m
x ¼ � k

m
x

where we have used the reduced mass m ¼ ðm1m2Þ=ðm1 þ m2Þ ¼ 1=2 in place of

unit mass m, as we did in the section on the two-mass problem in Chapter 4 to

convert the two-mass vibrational problem into a pseudo one-mass vibrational

problem. This sound mathematical technique is often presented essentially as a

trick in elementary physical chemistry books (as, indeed, it was in Chapter 4). The

second equation says that the acceleration along the translational axis is zero, which

is Newton’s first law: The system will continue in whatever translational state of

motion it is until acted upon by an external force.

Diagonalizing the K matrix converts arbitrary systems in generalized coordinate

systems q

m€qq1 ¼ �kq1 þ kq2

m€qq2 ¼ kq1 � kq2
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into systems expressed in terms of their normal coordinates Q

m€QQ1 ¼ k1Q1

m€QQ2 ¼ k2Q2

If this can be done in a two-dimensional space, it can (in principle) be done in an n-

space.

Polyatomic molecules vibrate in a very complicated way, but, expressed in terms

of their normal coordinates, atoms or groups of atoms vibrate sinusoidally in phase,

with the same frequency. Each mode of motion functions as an independent

harmonic oscillator and, provided certain selection rules are satisfied, contributes

a band to the vibrational spectrum. There will be at least as many bands as there are

degrees of freedom, but the frequencies of the normal coordinates will dominate the

vibrational spectrum for simple molecules. An example is water, which has a pair

of infrared absorption maxima centered at about 3780 cm�1 and a single peak at

about 1580 cm�1 (nist webbook).

Exercise 9-7

Run a MOPAC calculation using the PM3 Hamiltonian to determine the normal

vibrational modes of the H2O molecule.

Solution 9-7

One valid form of the input file is the z-matrix form usually associated with GAUSSIAN

calculations

pm3 force

water

o

h 1 r

h 1 r 2 a

r 1.00

a 105.

The keywords call up the PM3 Hamiltonian and a force constant calculation necessary for

the vibrational analysis. Line 5, the second line of the z-matrix, stipulates that one

hydrogen atom is connected to atom 1 (oxygen) at a distance of r angstroms. Line 6

stipulates the same distance for the second hydrogen atom and that it makes an angle of a

with atom 2 (the first hydrogen). This is enough information to completely specify the

geometry of the system provided that r and a are specified as they are in lines 8 and 9.

Skipping a line (here line 7) is essential. It is a good idea to skip a line after the entire file

has been written, here line 10. Some systems require it as a signal to the computer system

that the file is complete.

NORMAL COORDINATE ANALYSIS

ROOT NO. 1 2 3

1743.06437 3868.95047 3991.10929 etc.
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where ‘‘etc.’’ indicates that there are other roots but that they are of negligible size. The

three large numbers are the normal mode vibrational frequencies. The experimental

values (corrected for anharmonicity) are 1648, 3832, and 3943. All frequencies are in

units of cm�1.

Dipole Moments

MOPAC calculations yield dipole moments on molecules that are far more accurate

than those found by simpler methods because the geometries are more accurate.

These calculations are complicated enough to discourage use of the methods

already shown. In this context, a file-building program is necessary. Note that

calculating an input file from a gui drawing is a job consisting of very many very

simple calculations—just the thing a computer is good at. The same can be said for

adding up all the vectors to find a dipole moment once the geometry is known. It is

a very simple task, but you wouldn’t want to do it yourself.

COMPUTER PROJECT 9-3 j Dipole Moments (Again)

Using PCMODEL or a similar file-constructing gui, construct the input files for

cyclohexanone, 1,2-diketocyclohexane, 1,3-diketocyclohexane, and 1,4-diketocy-

clohexane. Given the experimental dipole moment of cyclohexanone of 2.87 debyes

and the rules of vector addition, estimate the dipole moments for the four target

molecules on the simplifying assumption that the cyclohexane ring is planar (it

isn’t).

O O
O

O

O

O

O

Run MOPAC using the MNDO, AM1, and PM3 Hamiltonians to calculate the

dipole moments for these four molecules.

Energies of Larger Molecules

At present, pharmaceutical and biochemical applications are probably the most

important practical applications of molecular orbital theory. Pharmaceutical and

biochemical applications usually involve rather large molecules. (The meaning of

the word ‘‘large’’ in reference to molecules depends to a large extent on your point

of view; what we call a large molecule is small to a protein chemist.) The principal

advantage of the MOPAC suite of programs is that they can be used to obtain

structures, energies, and electronic properties of larger molecules than can be

treated ab initio. The drawback is that the accuracy of calculated properties is
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subject to the accuracy of parameterization, which may be open to debate. Any

change in parameterization necessitates revision of all prior results.

Until recently, naphthalene was something of an outpost for the ab initiomethod.

Most calculations were carried out on molecules far smaller than naphthalene,

which lends itself to more extensive calculation only because of its simple planar

structure and its symmetry (hydrogens not shown)

When naphthalene is completely hydrogenated, its structure becomes much more

complicated. The rings take on a three-dimensional configuration and the product

molecule, decalin, exists as cis- and trans-isomers as determined by whether the

hydrogens add across the central bond on the same side or on opposite sides.

As a first step in molecular orbital calculations on larger molecules we shall

examine the energies and structures of cis- and trans-decalin.

Exercise 9-8

Use a gui to produce the cis and trans forms of decalin. Run a PM3 calculation of the

energies of these two forms. What is the cis-trans isomerization energy as calculated by

PM3?

Solution 9-8

A partial (edited) output from this program is

PM3

cis-decalin

HEAT OF FORMATION ¼ �42.688632 KCAL

SCF CALCULATIONS ¼ 20

COMPUTATION TIME ¼ 7.790 SECONDS

PM3

trans-decalin

HEAT OF FORMATION ¼ �44.442856 KCAL

SCF CALCULATIONS ¼ 27

COMPUTATION TIME ¼ 9.230 SECONDS

which leads to an isomerization enthalpy of �1.7 kcal mol�1. (‘‘Heat of formation’’

should be taken to mean enthalpy of formation in this context.) Entropy effects being

290 COMPUTATIONAL CHEMISTRY USING THE PC



negligible, the trans form is more stable than the cis form. Experimental values are

�40.4� 1.0 and �43.5� 1.0 kcal mol�1, respectively, leading to an isomerization

enthalpy of �3.1 kcal mol�1, with the same conclusion as to which isomer is the more

stable of the two. This is a good example of the meaning of the term ‘‘qualitative

agreement.’’ The calculation is not identical with experimental results, nor should we

expect it to be. Calculated results for the enthalpy of isomerization are within combined

experimental error, and they give the correct order of isomer stability.

A structural diagram of the cis form shows the increase in complexity brought about

by hydrogenation (Fig. 9-6).

COMPUTER PROJECT 9-4 j Large Molecules: Carcinogenesis

It has been known for a long time that polycyclic hydrocarbons are potent

carcinogens and that their carcinogenic activity is related to their electronic

structure (Pullman, 1955). By one hypothesis, DNA is attacked by electron-rich

portions of the carcinogen to form a complex that is so strong as to interfere with

the process of transcription of genetic information from one generation of cells to

the next. As a result of this faulty transcription process, cells grow in an

uncontrolled way.

The purpose of this computer project is to examine several polynuclear aromatic

hydrocarbons and to relate their electron density patterns to their carcinogenic

activity. If nucleophilic binding to DNA is a significant step in blocking the normal

transcription process of DNA, electron density in the hydrocarbon should be

positively correlated to its carcinogenic potency. To begin with, we shall rely on

clinical evidence that benzene, naphthalene, and phenanthrene

benzene naphthalene phenanthrene

are significantly lower in their carcinogenic activity (if any) than 10-methylben-

zanthracene and benzo[a]pyrene (a known carcinogen found in tobacco smoke)

Figure 9-6 Decalin (PCMODEL, Serena Soft-

ware). The cis decalin molecule is two ‘‘chair’’

forms of cyclohexane fused at a common bond.

SEMIEMPIRICAL CALCULATIONS ON LARGER MOLECULES 291



10-Methylbenzanthracene Benzopyrene

Procedure

Using the Rings tool to generate input files, carry out PM3 calculations on these

five molecules. Use the keywords PM3 bonds to generate PM3 bond order matrices,

the elements of which are directly proportional to electron probability densities.

Scan the bond order matrices (near the end of the output file) and locate the bond in

each molecule with the highest electron probability density. Arrange the five

molecules in order of the highest bond order observed in each. Does this order

coincide with the clinical evidence for increasing carcinogenicity, highest bond

order most carcinogenic? On the basis of the bond with the highest electron

probability density in the two most carcinogenic molecules, identify the region of

suspected carcinogenic activity. This region is called the K-region. Take care to

keep the numbering system of your molecule straight. These files may not follow

the conventional numbering system. Atom numbering can be found in PCMODEL

by going to the View menu and activating labels!atom nos!OK.

Exercise 9-9: MOPAC Molecular Energies Using GAUSSIAN94-W

Using GAUSSIAN for Windows, we can carry out a MNDO, AM1, or PM3

optimization, of, for example, the HF molecule, starting from any reasonable H–F

bond distance. The input file is similar to the standard MOPAC input file

# pm3 opt

pm3 optimization of hf

0 1

h

f,1,1.1

File 9-1. PM3 Input File for Optimizing the Energy of HF Starting From a Bond

Length of 1.1 Å. Note that the file is not case sensitive; lower case and upper

case letters are equally valid.

The first line in File 9-1 is the route section calling for a PM3 optimization. The

next three lines are: a blank line, a program label (human input not read by the

system), and a blank line. The input 0 1 indicates that the charge on the molecule is

0 and the spin multiplicity is 1 (paired electrons). The starting geometry is given in
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the next two lines; h establishes hydrogen as a fixed point and f,1,1.1 says that the

fluorine atom is attached to atom 1 (hydrogen) at a distance of 1.1 Å, an initial

guess at the bond length. File fragment 9-2 shows that the PM3 optimized bond

length is 0.934 Å.

The initial program run produces an energy HF¼�1.0000 hartrees (by sheer

coincidence) in the penultimate line of the energy output. The computed HF¼
�1.0000 hartrees¼�62.8 kcal mol�1. The experimental value is �65.1 kcal

mol�1. The final energy output is just above the ‘‘cookie,’’ by Voltaire, in this case.

-- Stationary point found.

-------------------------

! Optimized Parameters !

! (Angstroms and Degrees) !

----------------- -----------------

! Name Definition Value Derivative Info. !

-----------------------------------------------------------

! R1 R(2,1) 0.9378 -DE/DX = 0. !

-----------------------------------------------------------

Population analysis using the SCF density.

***************************************************

Total atomic charges:

1

1 H 0.179562

2 F -0.179562

1|1|GINC-UNK|FOpt|RPM3|ZDO|F1H1|PCUSER|01-Feb-1903|0||#PM3

OPT||pm3 optimization of hf||0,1|H,0.,0.,-0.8440032928|

F,0.,0., 0.0937781436||Version=486-Windows-G94RevB.2|

State=1-SG|HF=-0.1000037|RMSD=0.000e+000|RMSF=

6.008e-006|Dipole=0.,0.,-0.5524105|PG=C*V [C*(H1F1)]||@

Normal termination of Gaussian 94

COMMON SENSE IS NOT SO COMMON. -- VOLTAIRE

File Fragment 9-2. Partial Energy Output File (Edited) for an Optimized PM3

Calculation on HF Using GAUSSIAN94-W.

Cookies are different for each run. They make it easier for us to distinguish

between different runs on the same or similar input files. Some are apt and

humorous. They can lighten a long day’s work.

PROBLEMS

1. Draw a two-dimensional graph with the horizontal axis representing all real

numbers and the vertical axis representing all imaginary numbers (an Argand
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diagram). The plane established by these two axes is called the complex plane.

Locate the point

z ¼ 3þ 4i

on the complex plane. The distance from the origin to z is called the modulus

of z, zj j. What is the modulus zj j for the point z ¼ 3þ 4i?

2. The point z can also be located by establishing polar coordinates in the

complex plane where r is the radius vector and y is the phase angle. Draw

suitable polar coordinates for the Argand plane. What is r for the point

z ¼ 3þ 4i? What is y in degrees and radians?

3. Show that z�z ¼ jzj2 where z� is the complex conjugate of z

z ¼ xþ iy z� ¼ x� iy

and show that zj j ¼ r.

4. Show that

eiy ¼ cos yþ i sin y

and that

e�iy ¼ cos y� i sin y

5. Show that

z ¼ reiy

and that

z� ¼ re�iy

6. Show that

1 sað1Þ 1 sað2Þ
1 sbð1Þ 1 sbð2Þ
����

���� ¼ 1 sað1Þ 1 sbð1Þ
1 sað2Þ 1 sbð2Þ
����

����
7. Recall the definition of a matrix transpose (section on special matrices in

Chapter 2). Transpose the matrices

A ¼ 2 3

4 5

� �
and

B ¼
a b c

d e f

g h i

0
@

1
A

Are the determinants corresponding to the matrix and its transpose equal in

these two cases?
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8. Calculate the determinant of the symmetric matrix

D :¼
1 2 3

4 5 5:5
7 5:5 9

0
@

1
A

and the determinant of its transpose.
9. The wave function for a particle in a one-dimensional infinite potential well

(particle in a box) is

� ¼ A sin
npx
a

where n is a quantum number n ¼ 0; 1; 2; . . . and a is the dimension of the box

in the x direction. Normalize � to 1.

10. One spin combination allowable in excited state helium is a(1)a(2), which is

symmetric. There are three others. What are they? Indicate which are sym-

metric (s) and which are antisymmetric (a).

11. To satisfy the Pauli exclusion principle, the electronic wave function must be

antisymmetric. This condition can be met in the excited state of the helium

atom by taking the product of an antisymmetric space part such as

1ffiffiffi
2

p 1 sð1Þ1 sð2Þ � 2 sð1Þ1 sð2Þ½ �

times a symmetric spin part or by taking the product of a symmetric space part

times an antisymmetric spin part. For example,

1ffiffiffi
2

p 1 sð1Þ1 sð2Þ � 2 sð1Þ1 sð2Þ½ �að1Það2Þ ca;sð1; 2Þ

is antisymmetric� symmetric¼ antisymmetric, as denoted by the subscripts

on ca;sð1; 2Þ. It is a legitimate wave function. How many other such legitimate

products are there? Write them out.

12. The Hamiltonian for the helium atom is given in Eq. (9-2). All spin parts of the

wave function in the answer to Problem 9 are normalized so they all integrate

to 1, leaving only the space parts, of which there are four. These four orbitals

can be abbreviated as two � combinations, 1 s�ð1Þ2 s�ð2Þ � 2 s�ð1Þ1 s�ð2Þ
and 1 sð1Þ2 sð2Þ � 2 sð1Þ1 sð2Þ. Write out the variational expression

E ¼ Ð c�ĤHcdt for the energy using the abbreviated space orbitals and the

full Hamiltonian.

13. ‘‘All space’’
Ð
dt can be (artificially) subdivided into a space for electron 1

dvð1Þ and a space for electron 2 dvð2Þ, whereupon the answer to Problem 12

becomes

E ¼ 1

2

ð ð
½1 s�ð1Þ2 s�ð2Þ � 2 s�ð1Þ1 s�ð2Þ� �1

2
r2

1 � 1
2
r2

2 �
2

r1
� 2

r2
þ 1

r12

� �
½1 sð1Þ2 sð2Þ � 2 sð1Þ1 sð2Þ�dvð1Þdvð2Þ
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This enables us to separate the double integral into a sum of products of two

integrals, the first collecting terms to be integrated over the space containing

electron 1 and the second consisting of terms that are integrated over the space

containing electron 2. The first such product isð
1 s�ð1Þ �1

2
r2

1

� �
1 sð1Þdvð1Þ

ð
2 s�ð2Þ2 sð2Þdvð2Þ

How many more integral products are there like this one for the kinetic energy

operator �1
2
r2

1? How many of them are there for the kinetic energy operator

�1
2
r2

2? Write them out as a sum of integral products equal to the total kinetic

energy, Ekin.

14. The linear combination of atomic orbitals is orthonormal, henceÐ
1 s�ð1Þ2 sð1Þdvð1Þ ¼ 0, etc. and

Ð
1 s�ð1Þ1 sð1Þdvð1Þ ¼ 1, etc. Show that the

eight integral products in Problem 9.9.7 can be reduced to

Ekin ¼
ð
1 s�ð1Þ �1

2
r2

1

� �
1 sð1Þdvð1Þ þ

ð
2 s�ð1Þ �1

2
r2

1

� �
2 sð1Þdvð1Þ

15. Proceeding by analogy to the expansion over the two kinetic energy operators

in Problems 13 and 14, obtain a sum of eight single integral products that is the

energy contribution from the single-electron coulombic operators �2=r1 and

�2=r2. Drop those products that contain a zero integral due to orthogonality

and retain those for which
Ð
1 s�ð1Þ1 sð1Þdvð1Þ ¼ 1, etc. due to normalization.

Show that

Ecoul ¼
ð
1 s�ð1Þ � 2

r1

� �
1 sð1Þdvð1Þ þ

ð
2 s�ð1Þ � 2

r2

� �
2 sð1Þdvð1Þ

16. The remaining task in expanding the variational expression

E ¼ 1

2

ð ð
½1 s�ð1Þ2 s�ð2Þ � 2 s�ð1Þ1 s�ð2Þ� �1

2
r2

1 � 1
2
r2

2 �
2

r1
� 2

r2
þ 1

r12

� �
½1 sð1Þ2 sð2Þ � 2 sð1Þ1 sð2Þ�dvð1Þdvð2Þ

involves only the multiplication

Er12 ¼
1

2

ð ð
½1 s�ð1Þ2 s�ð2Þ � 2 s�ð1Þ1 s�ð2Þ� 1

r12

� �
½1 sð1Þ2 sð2Þ

� 2 sð1Þ1 sð2Þ�dvð1Þdvð2Þ
which is simpler than what we have done and follows the pattern

(a� b)(c)(d� e)¼ ac� bc(d� e)¼ acd� bcd� aceþbce.Write out the result.

17. Now collect all terms from Problems 9.9.8 through 9.9.10 and show that they

add up to the Hartree–Fock equation

Ei ¼ I1 þ I2 þ J12 � K12

for the excited state of the helium atom.
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18. If the heat of formation of H is calculated by MNDO as 52.10 kcal mol�1

(Fig. 9.8.7) what is the bond dissociation energy of H2?

19. Based on the output file in Fig. 9-3, what is the energy of formation of Hþ as

determined by MNDO?

20. Calculate the bond length, ionization potential, and dipole moment of carbon

monoxide by MNDO, AM1, and PM3.

21. What are the bond lengths in HCN according to a MNDO calculation? Repeat

the calculation using AM1 and PM3 in both the MOPAC and GAUSSIAN for

Windows implementations.

22. Run the following rather curious-looking 6-line input file in the MOPAC

implementation.

1
1 1.

(Note that lines 1, 2, 3, and 6 are blank.) Does it run? What do the results

mean? What two generalizations can you make about MOPAC input files from

this program run?

23. If this absurdly diminished input file runs, can we carry the absurdity a step

further and run the file

1

(Note that lines 1, 2, 3, and 5 are blank.) If so, what does the resulting output

describe?

How would we obtain the MNDO approximations to the properties of the

nitrogen atom?

24. What is the enthalpy of isomerization of propene (C3H6) to cyclopropane at

298 K by a semiempirical calculation?

25. Obtain the dipole moment of methylenecyclopropene by a MNDO calculation

and compare your answer with the result obtained from Huckel molecular

orbital calculations.
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C H A P T E R

10
Ab Initio Molecular
Orbital Calculations

Once having the Hartree–Fock equation and the Slater determinantal method of

producing correctly antisymmetrized orbitals, it would seem that we should be able

to approach the correct wave function by finding better and better basis sets,

however laborious that process might be. In fact, basis set improvement leads to a

limiting value for c and an energy that is above the experimental energy for the

molecule. This limit is called the Hartree–Fock limit. We shall find ways of

approaching the Hartree–Fock limit and then examine two ways of getting past it,

one from Moeller and Plesset and the other a density functional method from

Becke.

The GAUSSIAN Implementation

To go from a semiempirical calculation in the GAUSSIAN implementation (File 9-1)

to an ab initio calculation, one need only change PM3 in the route section of the

input file to sto-3g for a single point calculation or sto-3g opt for an

optimization. We have made this change in File 10-1 along with the substitution

of h for f in the second line of the geometry section to calculate the molecular

Computational Chemistry Using the PC, Third Edition, by Donald W. Rogers

ISBN 0-471-42800-0 Copyright # 2003 John Wiley & Sons, Inc.
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properties of H2. This avoids potential confusion of the Hartree-Fock energy HF

with the hydrogen fluoride molecule HF.

# sto-3g opt

sto-3g optimization of h2

0 1

h

h,1,1.1

File 10-1. Input file for an STO-3G ab initio optimization of H2.

Exercise 10-1

Calculate the H��H bond length in ground-state H2 using the STO-3G basis set in the

GAUSSIAN for Windows implementation.

Solution 10-1

The input file is File 10-1. The bond length is given in File Segment 10-2.

Optimization completed.

– Stationary point found.

- – - - - - - - - - - - - - - - - - -

! Optimized Parameters !

! (Angstroms and Degrees) !

- - - - - - - - - - - - - - - - - - - - - - - - - -

! Name Definition Value Derivative Info. !

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - –

! R1 R(2,1) 0.712 �DE/DX ¼ 0.0003 !

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

File Segment 10-2. The STO-3G Estimate of the H��H Bond Length. The experimental

value is 0.742 Å.

Exercise 10-2

A class of 20 students has access to only one copy of GAUSSIAN. Need they wait in line

to write their input files on this one machine?

Solution 10-2

Certainly not. Input File 10-1 was written using the DOS editor and saved on a 3.50 0

floppy disk. You can write your input files at home on a laptop if you like, and then run

them when your GAUSSIAN is not otherwise in use. Use .gjf (gaussian job file) as your

file extension. If your editor gives the .txt extension or some such, use the rename

command in DOS. If you run your file directly from the a: drive, the output will be stored
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on the a: drive as well. That can be an advantage because you now have a permanent

record of the output file for writing papers and reports. Use a fresh floppy so you have

enough room for the output file. Later, your output files may exceed the capacity of a

floppy. Then you need to go to a ZIP drive or a CD.

Exercise 10-3

Create File 10-1 using an editor independent of the GAUSSIAN system and use it to solve

Exercise 10-1.

How Do We Determine Molecular Energies?

We shall examine the simplest possible molecular orbital problem, calculation of

the bond energy and bond length of the hydrogen molecule ion Hþ
2 . Although of no

practical significance, Hþ
2 is of theoretical importance because the complete

quantum mechanical calculation of its bond energy can be carried out by both

exact and approximate methods. This permits comparison of the exact quantum

mechanical solution with the solution obtained by various approximate techniques

so that a judgment can be made as to the efficacy of the approximate methods.

Exact quantum mechanical calculations cannot be carried out on more complicated

molecular systems, hence the importance of the one exact molecular solution we do

have. We wish to have a three-way comparison i) exact theoretical, ii) experimental,

and iii) approximate theoretical.

Exact Theoretical. The exact solution is found by solving the problem in

ellipsoidal polar coordinates with the nuclei at the foci of the ellipses, in a way

similar to solution for the hydrogen atom in spherical polar coordinates with

the single nucleus at the center of the sphere. The result for the energy of the ground

state is E ¼ 0:1026 hartrees ¼ 2:791 eV ¼ 269:3 kJ mol�1 (Hanna, 1981). The

bond length is R ¼ 2:00 bohr where 1.000 bohr ¼ 0.5292 Å. The total energy for

this simple system, 0.6026 h, is the bond energy plus the energy of the hydrogen

atom, 0.5000 h.

Experimental. The vibrational spectrum of an ideal harmonic oscillator would

consist of one line at frequency n corresponding to �E ¼ hn, where �E is the

distance between levels on the vertical energy axis in Fig. 10-1a. In the harmonic

oscillator,�E is the same for a transition from one energy level to an adjacent level.

A selection rule �n ¼ �1, where n is the vibrational quantum number, requires

that the transition be to an adjacent level.

The Hþ
2 ion is not, however, a perfect harmonic oscillator. Its spectrum consists

of many lines because its vibrational levels get closer together as the vibrational

energy increases, as in Fig. 10-1b. The Hþ
2 ion displays anharmonicity. As

oscillations become more energetic, an internuclear distance R is reached, seen

on the right of Fig. 10-1b, at which further separation of the nuclei results in only an

infinitesimal increase in energy E. Beyond this limit, dissociation has occurred

Hþ
2 ! Hþ Hþ ð10-1Þ
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The dissociation energy D0 is the energy that must be put into the system to

break the bond, bringing about reaction (10-1). The extrapolated dissociation

energy or bond energy De is defined slightly differently. If, as is usually done, we

set the zero of energy at the level of the free, unbound atom H and ion Hþ, De is the

amount of energy released when the system Hþ Hþ goes to Hþ
2 at the bottom of the

potential well in Fig. 10-1b. Because energy is coming out of the system, the bond

energy is a negative number.

A simple mathematical manipulation of the dissociation energy of Hþ
2 , as

determined from its absorption spectrum, yields the bond energy. Planck’s law,

�E ¼ hn, permits us to calculate the energy difference between the lowest level

and the next higher level from its spectroscopic line at 2191 cm�1. This is the

highest frequency line because the lowest is the largest of all energy spacings in

Fig. 10-1b. We can also measure the second energy increment, which corresponds

to the spectral peak of next lower frequency, the third, and so on, corresponding to

the gradual diminution of energy spacing in Fig. 10-1b. The series approaches zero.

The sum of all energies of transition is the dissociation energy.

Exercise 10-4

What is the energy difference in electron volts and kilojoules per mole between the

ground state of Hþ
2 and its lowest vibrationally excited state? The vibrational spectrum of

Hþ
2 has lines at 2191, 2064, 1941, 1821, 1705, 1591, 1479, 1368, 1257, 1145, 1033, 918,

800, 677, 548, 411, 265, 117 cm�1.

Solution 10-4

The gap between the states with vibrational quantum numbers n ¼ 0 and n ¼ 1 (ground

state and lowest vibrationally excited state) corresponds to the highest energy line,

2191 cm�1, hence

2191ð1:240� 10�4Þ ¼ 0:2717 eV ¼ 26:20 kJ mol�1

where 1:240� 10�4 is the conversion factor from cm�1 to eV.

E

R

a

E

R

b

De

D0

Figure 10-1 The Potential Well and Energy Levels of (a) a Perfect Harmonic Oscillator and

(b) an Anharmonic Oscillator Resembling H2
þ:R is the internuclear distance, D0 is the

dissociation energy and �De is the bond energy.
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Exercise 10-5

What is the sum of all the energy gaps as determined from the vibrational spectrum

of Hþ
2 ?

Solution 10-5

The sum is 21331 cm�1 ¼ 2:645 eV ¼ 255:1 kJ mol�1. This is a first approximation to

the dissociation energy.

If we plot the energy of each transition as a function of the quantum number of

the vibrational state to which the system is excited, we have what is called a Birge–

Spooner plot (Fig. 10-2). Two corrections are needed to convert the result of

Exercise 10-5, which is essentially an integration under the Birge–Spooner

function, to the bond energy of Hþ
2 . One correction is the small amount of energy

not accounted for between the highest vibrational quantum number n ¼ 18 and

E ¼ 0 in Fig. 10-2. This energy is represented by the small triangle between the

rightmost end of the curve and the extrapolation to the E ¼ 0 axis. It is 46.2 cm�1,

and it is added to the result of Exercise 10-5.

The second correction is much larger. The residual energy that the molecule ion

has in the ground state above the De at the equilibrium bond length is the zero point

energy, ZPE.

EðZPEÞ ¼ De � D0 ð10-2Þ
We must add the amount of energy at the bottom of the ‘‘bowl’’ in Fig. 10-1b to the

sum from Exercise 10-5. This energy is one-half a quantum at the wavenumber

extrapolated one-half quantum number below n ¼ 0 (see Problems).

When corrected for both the energy unaccounted for at the low end of the Birge–

Spooner plot, and E(ZPE),

�Evib ¼ 22505 cm�1 ¼ 2:791 eV ¼ 269:3 kJmol�1

Recall that the result of the exact theoretical calculation is 2:791 eV ¼
269:3 kJmol�1.

Vibrational Quantum Number

0 2 4 6 8 10 12 14 16 18 20

E
, c

m
–1

0

500

1000

1500

2000

2500

Figure 10-2 BirgeSpooner Plot

of the Energy Increment Between

Vibrational Energy Levels vs. the

Vibrational Quantum Number.
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A zero point energy is found in every chemical bond; therefore, it will be a

crucial part of all of our future calculations. The existence of an irreducible ZPE

satisfies the Heisenberg uncertainty principle because the molecule does not exist

precisely at the potential energy minimum in the ground state. We do not know the

exact positions of the two nuclei on the lowest horizontal line in Fig. 10-1b; we only

know that they are separated by a distance that is somewhere on the line. (Actually,

a complete quantum mechanical treatment allows internuclear distances that go

slightly beyond the ends of the horizontal line at D0.)

Approximate Theoretical. The simplest molecular orbital problem is that of the

hydrogen molecule ion (Fig 10-3). Hþ
2 is a preliminary example of all molecular

orbital problems to come, which, although they may be very complicated, are

elaborations on this simple example.

Assuming the Born–Oppenheimer approximation, we are looking at a problem

of one electron in the field of two singly-positive nuclei at some fixed distance R

�1
2
r2 � 1

rA
� 1

rB

� �
� ¼ Eel� ð10-3Þ

There are many possible values of R, each of which leads to a unique value of the

electronic energy Eel. Thus, although R is constant for any single calculation under

the Born–Oppenheimer approximation, the total energy of the system, including

internuclear repulsion energy (always positive) is a function of whatever value of R

has been selected for the calculation

Ebond ¼ Eel þ 1

R
ð10-4Þ

EbondðRÞ has a minimum at the equilibrium bond length.

Under the LCAO approximation,

c ¼ a1e
�rA � a2e

�rB ð10-5Þ
where a1e

�rA and a2e
�rB are normalized hydrogen 1s wave functions, call them 1sA

and 1sB. By the variational theorem,

E ¼
ð
cĤHc dt

¼ 1

2ð1þ SÞ
ð

1sA þ 1sB �1
2
r2 � 1

rA
� 1

rB

� �
1sA þ 1sB

� �
dt ð10-6Þ

e–

++
R

rA rB

Figure 10-3 The Hydrogen

Molecule Ion, H2
þ.
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where S is the overlap integral and 1=½2ð1þ SÞ� is the normalization constant. The

Hþ
2 molecule ion is symmetrical soð

1sA �1
2
r2

� �
1sA dt ¼

ð
1sB �1

2
r2

� �
1sB dt ð10-7Þ

and ð
1sA � 1

rA

� �
1sA dt ¼

ð
1sB � 1

rB

� �
1sB dt ð10-8Þ

If we expand Eq. (10-7) and simplify according to the symmetry of the problem,

(Richards and Cooper, 1983) the integral breaks up in the way it did for the helium

atom excited state

E ¼ 1

ð1þ SÞ
ð
1sA �1

2
r2

� �
1sA dtþ

ð
1sA �1

2
r2

� �
1sB dt�

ð
1sA � 1

rA

� �
1sA dt

�
ð
1sA � 1

rB

� �
1sA dt� 2

ð
1sA � 1

rB

� �
1sB dt ð10-9Þ

Evaluation of the integrals is simplified by the observation that

1sA ¼ 1ffiffiffi
p

p e�rA and 1sB ¼ 1ffiffiffi
p

p e�rB

When we perform these integrations, we get

E ¼ J þ K

1þ S
ð10-10Þ

where

J ¼ 1þ 1

R

� �
e�2R

K ¼ S

R
� e�Rð1þ RÞ

and

S ¼ 1þ Rþ R2

3

� �
e�R

Exercise 10-6

The minimum for the equilibrium internuclear distance in Hþ
2 is 2.49 bohrs in this first

approximation. Calculate the dissociation energy of Hþ
2 at this distance.
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Solution 10-6

S ¼ 0:461 J ¼ 0:00963 K ¼ �0:1044

E ¼ �0:065 hartrees

The energy is negative, which indicates bonding. The dissociation energy neces-

sary to separate the ion into H and Hþ is positive by convention. One hartree ¼
627:51 kcal mol�1 ¼ 27:212 eV ¼ 2625 kJmol�1, leading to E ¼ 170 kJmol�1.

This is 63% of the experimental value. The quantitative result is not good, but

the qualitative result is absolutely spectacular: The chemical bond is a natural result

of quantum mechanics! Bear in mind that Schroedinger was not attempting to

explain the chemical bond with his celebrated equation (Schroedinger, 1926); he

was explaining the spectrum of the hydrogen atom. The explanation of the chemical

bond came later (Heitler and London, 1927), as a consequence of the Schroedinger

equation.

Why Is the Calculated Energy Wrong?

In the case of Hþ
2 , the energy is wrong because the molecular orbital is not a linear

combination of atomic orbitals, it is approximated by a linear combination of

atomic orbitals. Use of scaled atomic orbitals

wA ¼ Z
3
2ffiffiffi
p

p e�ZrA and wB ¼ Z
3
2ffiffiffi
p

p e�ZrB

with an optimized scale factor Z ¼ 1:24 brings the discrepancy down to 15.8%.

Can the Basis Set Be Further Improved?

Almost from the dawn of quantum mechanics a great deal of effort has been put

into devising better basis sets for molecular orbital calculations (for example,

Rosen, 1931; James and Cooledge, 1933). Prominent among more recent work is

the long series of GAUSSIAN programs written by John Pople’s group (see, for

example, Pople et al., 1989) leading to the award of the Nobel prize in chemistry to

Pople in 1999. GAUSSIAN consists of a suite of programs from which one can

select members by means of keywords. We have already seen the keyword STO-3G
used in File 10-1 to select the approximation of Slater-type orbitals by three

Gaussian functions. Along with individual calculations, GAUSSIAN also permits

you to run sequential calculations by executing a script that specifies the programs

to be run, the order in which they are to be run, and how the various outputs are to

be combined to give a final result. This technique has been developed to a high

degree of accuracy in the GAUSSIAN family of programs, of which we shall use

the principal members, G2 and G3.

Exercise 10-7

Calculate the bond energy of Hþ
2 by the G2 method in the GAUSSIAN implementation.
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Solution 10-7

Run the Hþ
2 input file with the keyword g2.

# g2

H2 ion

1 2

h

h 1 1.32

The keyword is in the route section, line 1 of the input file. Lines 2, 3, and 4 are blank,

comment, blank, respectively. Line 5 designates a charge of 1 and a spin multiplicity of 2

(a doublet). Line 6 specifies one atom as hydrogen, and line 7 specifies the second atom as

hydrogen, attached to atom 1 at a distance of 1.32 Å(2.49 bohr). Among several G2

energies printed out in about the last 25 lines of output are

E(ZPE)¼ 0.004373

and

G2(0 K)¼�0.597624

A distinction must be made between single-point GAUSSIAN calculations or

optimizations and the energy output G2(0 K). Individual GAUSSIAN calculations

produce the energy De coming out of the system when all the nuclei and electrons

come together to form a molecule, radical, or ion, in this case,

Hþ þ Hþ þ e� ! Hþ þ H ! Hþ
2 ð10-11Þ

at the bottom of the potential well. G2 and G3 are scripted to produce the energy D0

(Fig. 10-3) of Hþ
2 (or other molecular systems) in the ground state, one-half a quantum

above the bottom. Thus the G2 output is the total energy of the system (negative) plus

E(ZPE), which is positive relative to the bottom of the well,

total energyþ EðZPEÞ ¼ G2ð0 KÞ

in this case

�0:601997þ 0:004373 ¼ �0:597624 h

One may wonder why it is important to distinguish between and keep track of

these two energies De and D0, when it seems that one would do. Actually, both are

important. The bond energy De dominates theoretical comparisons and the

dissociation energy D0, which is the ground state of the real molecule, is used in

practical applications like calculating thermodynamic properties and reaction

kinetics.
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The total energy is very much larger in magnitude (more negative) than the bond

energy because most of the energy in a molecule resides in its atoms. The chemical

bond is only a small perturbation on the total energy of the molecular system. The

bond energy is the energy of the second step in Eq. (10-1), combination of Hþ with

H. Thus we must subtract the energy of the first step, formation of H, from the total

to obtain

�0:601997� ð�0:500000Þ ¼ 0:101997 ¼ 0:1020 hartrees

about 0.6% in error relative to the exact value for the bond energy of 0.1026 h. The

equilibrium internuclear distance is 1.04 Å or 1.97 bohr (experimental value 2.00

bohrs). Before we look at the details of basis set improvement and other issues in

the GAUSSIAN procedures, let us carry out a calculation on a more difficult

problem, that of the hydrogen molecule.

Hydrogen

Even though the problem of the hydrogen molecule H2 is mathematically more

difficult than Hþ
2 , it was the first molecular orbital calculation to appear in the

literature (Heitler and London, 1927). In contrast to Hþ
2 , we no longer have an exact

result to refer to, nor shall we have an exact energy for any problem to be

encountered from this point on. We do, however, have many reliable results from

experimental thermochemistry and spectroscopy.

Like Hþ
2 , H2 has a simple Hamiltonian

ĤH ¼ �1
2
r2

1 � 1
2
r2

2 �
1

r1A
� 1

r1B
� 1

r2A
� 1

r2B
þ 1

r12
þ 1

R
ð10-12Þ

where the subscripts 1 and 2 refer to electrons, A and B refer to the nuclei, and R is

the internuclear distance, which we shall take to be constant in any single

calculation. This problem appears to be nothing more than an extension of Hþ
2 ,

but, because of the 1=r12 term in the Hamiltonian, it is insoluble. We have only the

experimental equilibrium bond length of 1.400 bohrs (.7408 Å) and the bond energy

of 1.74 h (Hertzberg, 1970), measured by the spectroscopic method in the section

on determining molecular energies above in this chapter, for comparison.

Reading the output for H2 is similar to Hþ
2 as well. The optimized bond distance is

- - Stationary point found.

- - - - - - - - - - - - - - - - -

! Optimized Parameters !

! (Angstroms and Degrees) !

- - - - - - - - - - - - - - - - - - - -

! Name Definition Value Derivative Info. !

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! R1 R(2,1) 0.7301 �DE/DX¼ -0.0001 !
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which is shorter than it is for Hþ
2 as expected in a molecule with two bonding

electrons rather than just one. The discrepancy between the experimental length and

the calculated bond length is a little over 1.4%. The bond energy is

G2ð0 KÞ � EðZPEÞ ¼ �1:16635� 0:00946 ¼ �1:17581 h

De ¼ �1:17581� ð�1:00000Þ ¼ �0:17581 h

where the electronic energy of two isolated hydrogen atoms is taken into account in

the second equation. The discrepancy between the calculated result and experiment

is slightly over 1%.

Despite these similarities between the G2 calculations of De for H2 and Hþ
2 ,

there is a profound difference that is only hinted at in the single-point energies in

Table 10-1. In the first group of results we see that all the calculations, with the

exception of the last one, give the same answer. In the lower block of results, for H2,

this is not the case. Some results are duplicated and some are not. The results are

more mixed.

In addition to the mixed results in Table 10-1, the G2 calculation for H2 produces

an energy that is lower than the experimental value, in contradiction to the rule that

variational procedures reach a least upper bound on the energy. Some new factors

are at work, and we must look into the structure of the G2 procedure in terms of

high-level Gaussian basis sets and electron correlation.

Gaussian Basis Sets

Gaussian-Type Orbitals, GTOs. In G2 and G3, an effort is made to extend

the basis set to its practical limit of accuracy. We have seen, in the case of STO-

nG basis sets, that more contributing Gaussian functions make for better agreement

between calculated and known energies, but there is a point of diminishing return,

beyond which further elaboration produces little gain. The same is true of the

Gaussian n-xxG basis sets, for example, 6-31G, except that there are more of them

Table 10-1 Energies of of H2 and Hþ
2
Calculated by Various High-Level Basis Sets.

Hþ
2

MP2=6-311Gðd; pÞ ¼ �0:6011593 QCISD=6-311Gðd; pÞ ¼ �0:6011593
MP4=6-311Gðd; pÞ ¼ �0:6011593 MP2=6-311þ Gðd; pÞ ¼ �0:6011593
MP4=6-311þ Gðd; pÞ ¼ �0:6011593 MP2=6-311Gð2df; pÞ ¼ �0:6011593
MP4=6-311Gð2df; pÞ ¼ �0:6011593 MP2=6-311þ Gð3df; 2pÞ ¼ �0:6018074

H2

MP2=6-311Gðd; pÞ ¼ �1:1602718 QCISD=6-311Gðd; pÞ ¼ �1:1683162
MP4=6-311Gðd; pÞ ¼ �1:1677248 MP2=6-311þ Gðd; pÞ ¼ �1:1602718
MP4=6-311þ Gðd; pÞ ¼ �1:1677248 MP2=6-311Gð2df; pÞ ¼ �1:1602718
MP4=6-311Gð2df; pÞ ¼ �1:1677248 MP2=6-311þ Gð3df; 2pÞ ¼ �1:1627639
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and the notation can be daunting at first. In using many Gaussians to express the

space part of a molecular orbital, one finds that demands on computer resources

increase roughly as the fourth power of the number of basis functions. This rule

brings about a practical limit on the complexity of the basis set. Thus basis set

efficiency becomes an important factor in molecular methods because an efficient

computer protocol enables us to treat more difficult and more interesting problems.

One also finds that the basis functions fall into natural groups that are replicated

from one calculation to the next; hence, a way of using computer resources

efficiently is by treating each group as though it were a single function.

Contracted Gaussian-Type Orbitals, CGTOs. Each natural group of basis

functions can be treated as a unit called a contracted Gaussian. Constituent

Gaussians making up a contracted Gaussian are called primitive Gaussians or

simply primitives. Optimizing all the parameters in all of the primitives on each run

is a big job (remember the 4th power rule). A better strategy is to optimize each

group once and for all

wj ¼
X
i

cjigiða; rÞ ð10-13Þ

where giða; rÞ is the Gaussian, for example

giða; rÞ ¼ 2a
p

� �3=2

e�ar2 ð10-14Þ

in the simple case of the 1s orbital. The groups are then combined to find the

desired molecular orbital

ci ¼
X
j

ajiwj ¼
X
j

aji
X
i

cjigiða; rÞ ð10-15Þ

If we start out with 36 primitives (by no means a large number in this context) and

segment them into groups of 6, we have reduced the problem sixfold.

Split-Valence Basis Sets. In split-valence basis sets, inner or core atomic orbitals

are represented by one basis function and valence atomic orbitals are represented by

two. The carbon atom in methane is represented by one 1s inner orbital and 2(2s,

2px, 2py, 2pz)¼ 8 valence orbitals. Each hydrogen atom is represented by 2 valence

orbitals; hence, the number of orbitals is

1þ 8þ 8 ¼ 17

In the 6-31G basis, the inner shell of carbon is represented by 6 primitives and the 4

valence shell orbitals are represented by 2 contracted orbitals each consisting of 4

primitives, 3 contracted and 1 uncontracted (hence the designation 6-31). That gives
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us 4ð4Þ ¼ 16 primitives in the valence shell. The single hydrogen valence shells are

represented by 2 orbitals of 2 primitives each. That gives us a total of

6þ 4ð4Þ þ 4ð2� 2Þ ¼ 38 primitives

which we verify by running the program in the 6-31G basis and finding

17 basis functions 38 primitive gaussians

The reason the inner shell of carbon is represented by 6 primitives in this basis is

that the cusp in the 1s orbital is difficult to approximate with Gaussians that have no

cusp.

Basis sets can be further improved by adding new functions, provided that the

new functions represent some element of the physics of the actual wave function.

Chemical bonds are not centered exactly on nuclei, so polarized functions are

added to the basis set leading to an improved basis denoted p, d, or f in such sets as

6-31G(d), etc. Electrons do not have a very high probability density far from the

nuclei in a molecule, but the little probability that they do have is important in

chemical bonding, hence diffuse functions, denotedþ as in 6-311þG(d), are added

in some very high-level basis sets.

COMPUTER PROJECT 10-1 j Gaussian Basis Sets: The HF Limit

The input file for an STO-3G calculation of the bond distances, energies, and other

molecular properties of the isolated water molecule in the gaseous state at 0 kelvins

is

# sto-3g

water

0 1

O

H 1 .74

H 1 .74 2 105.

where the bond distances and the bond angle are fairly close to experimental values.

This is a single-point calculation because it is not optimized. The objective of this

computer project is to examine the influence of increasingly high-level basis sets on

the calculated total energy of the water molecule.

Procedure. Calculate and record the STO-3G energy of water by running the file

above. Carry out the optimization with sto-3g opt in the route section. Repeat

with 3-21G, 3-21G opt, 6-21G, 6-21G opt, 4-31G, 4-31G opt, 6-
31G, 6-31G opt, 6-311G, 6-311 opt, 6-311þ G, 6-311þ G opt,
6-311þ G(d) opt, 6-311þ G(d,p) opt, 6-311þ þ G(d,p) opt, and
6-311þ þ G(3df,2p) opt in the route section. Tabulate and correlate your

output results. Is the calculation approaching a limiting value? Strictly speaking, the

Hartree–Fock limit (HF limit) is the limit at an infinitely high-level Gaussian basis
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set, which is, of course, unobtainable. The 6-311þþG(3df,2p) calculation is,

for practical reasons, as high as one goes in G2 calculations. Estimate about where

you think the HF limit would be found if it could be calculated. Repeat the

calculation one last time at the G2 level with g2 in the route section. Calculate Ee

from the G2 result. The correlation energy is Ee � E(HF limit). Estimate the

correlation energy for the water molecule based on this series of calculations.

Electron Correlation

A very important difference between H2 and Hþ
2 molecular orbital calculations is

electron correlation. Electron correlation is the term used to describe interactions

between electrons in the same molecule. In the hydrogen molecule ion, there is only

one electron, so there can be no electron correlation. The designators given to the

calculations in Table 10-1 indicate first an electron correlation method and second a

basis set, for example, MP2/6-31G(d,p) designates a Moeller–Plesset electron

correlation extension beyond the Hartree–Fock limit carried out with a 6-

31G(d,p) basis set.

Exercise 10-8

Compare the energy found using 6-31G in the route section of the Hþ
2 file in the

GAUSSIAN implementation with the result found using MP2/6-31G in the route section.

Repeat this comparison for H2.

Solution 10-8

For the Hþ
2 ion, the results are the same HF ¼ �0:5768653MP2 ¼ �0:5768653. For

the H2 molecule, which has electron correlation, the results are not the same

HF ¼ �1:1267553MP2 ¼ �1:1441366. (Your F and P may come out H� ¼
�1:1267553M

Q
2 ¼ �1:1441366.)

Each of the basis sets described in Computer Project 10-1 assumes one anti-

symmetrized Slater determinant and only approaches the Hartree-Fock limit,

which, as we have seen, is a long way from the desired result for chemical

applications. Releasing restrictions on an electron (or any confined particle) lowers

its energy. Suppose to our ground-state determinant we add an antisymmetrized

determinant representing one valence electron in the first excited state. The con-

straints on that electron are reduced because it can be in either the ground or excited

state; hence, the energy of the system is lowered. If we can add one antisymme-

trized determinant, we can add more than one. The wave function is now a sum

c ¼ b0c0 þ
X
n

bncn ð10-16Þ

where c0 is the Hartree-Fock antisymmetrized determinant and cn are antisymme-

trized determinants of various excited states. If the sum is infinite, all possible

determinants are included and this procedure is called full configuration interaction

or full CI. Full CI is not possible in a practical sense, but we would like to get as

close to it as possible by using a truncated sum in Eq. (10-16). Truncated CI
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methods include CIS for single substitution [n ¼ 1 in Eq. (10-16)], CID for double

substitution, CIT for triple and QCISD(T) for quadratic singles, doubles, and

(possibly triples) excitation. In Table 10-1 different MP CI levels produce the same

results for Hþ
2 , which has no electron correlation, but MP2 and MP4 results are

different for H2, which has electron correlation.

A Moeller–Plesset CI correction to c is based on perturbation theory, by which

the Hamiltonian is expressed as a Hartree–Fock Hamiltonian perturbed by a small

perturbation operator P̂P through a minimization constant l

ĤH ¼ ĤHHF þ lP̂P

After expansion of P̂P as a power series (Foresman and Frisch, 1996) Moeller–

Plesset theory results in a correction for the wave function and the energy. The

energy correction is always negative, which ‘‘improves’’ our calculation, but the

Moeller–Plesset (MP) procedure is not a variational procedure, does not produce a

least upper limit, and can overcorrect the energy. This is part of the explanation of

why the G2 bond energy for H2 in the section on the hydrogen molecule above in

this chapter is lower than the experimental value. Gaussian basis sets containing

component MP CI calculations are denoted, for example, MP2/6-31G or, if

polarization functions are also included, MP2/6-31G(d,p).

G2 and G3

By systematically applying a series of corrections to approximate solutions of the

Schroedinger equation the Pople group has arrived at a family of computational

protocols that include an early method G1, more recent methods, G2 and G3, and

their variants by which one can arrive at thermochemical energies and enthalpies of

formation, �fE
0 and �fH

298, that rival experimental accuracy. The important thing

is that the corrections are not unique to the molecule but are unique to the

computational system, G1, G2, G3(MP2), etc., and can be applied to any molecule.

We shall treat the G2 method in some detail and then treat the G3 method as an

extension of it.

G2. The objectives are to obtain:

1. An equilibrium geometry.

The geometry is obtained at the MP2/6-31G(d) level.

2. A total electronic energy Ee.

The electronic energy is obtained by correcting the MP4/6-311G(d,p) energy.

3. A set of harmonic frequencies leading to E(ZPE).

4. The ground state energy E0.

The ground state energy is obtained as E0 ¼ Ee þ E(ZPE).

Corrections to the MP4/6-311G(d,b) Energy. Higher-level basis functions, if

they are prudently chosen, should be better than lower-level functions. Thus the

energy of, for example, a diffuse function, E[MP2/6-311þG(d,p)] should be lower

(more negative) than the same function in which diffuse electron density is not

taken into account E[MP2/6-311G(d,p)], provided that the levels of electron
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correlation are the same. All other things being equal, the diffuse function (þ)

improves the calculated energy by some small amount. A plausible correction to

any chosen base energy would be the difference E[MP2/6-311þG(d,p)]–E[MP2/

6-311G(d,p)].

G2 theory, along with other members of the Gn family, rests on the assumption

that both basis set corrections and electron correlation corrections are additive. The

total energy of a molecular system E0 by the G2 method, is found by arbitrarily

selecting a starting point, E[MP4/6-311G(d,p)] in this case, and adding to it

corrections found by applying various higher-level basis functions and higher

levels of electron correlation to the system. Once we know what the various

corrections are, we shall be able to construct G2 energies of startling accuracy for a

wide variety of molecules, radicals, and ions. It is this achievement that won the

Nobel prize for John Pople.

To obtain the G2 value of E0 we add five corrections to the starting energy,

E[MP4/6-311G(d,p)] and then add the zero point energy to obtain the ground-state

energy from the energy at the bottom of the potential well. In Pople’s notation these

additive terms are

E0 ¼ E½MP4=6-311Gðd; pÞ� þ�EðþÞ þ�Eð2d; f Þ þ�þ�EðQCIÞ
þ HLC þ EðZPEÞ ð10-17Þ

where

�EðþÞ ¼ E½MP4=6-311þ Gðd; p�Þ��E½MP4=6-311Gðd; pÞ�
�Eð2d; f Þ ¼ E½MP4=6-311Gð2df; pÞ��E½MP4=6-311Gðd; pÞ�

� ¼ E½MP2=6-311þ Gð3df; 2pÞ��E½MP2=6-311Gð2df; pÞ��E½MP2=

6-311þ Gðd; pÞ� þ E½MP2=6-311Gðd; pÞ�
�EðQCIÞ ¼ E½QCISD=6-311Gðd; pÞ��E½MP4=6-311Gðd; pÞ�

HLC ¼ 4ð�0:00500Þ
EðZPEÞ ¼ 0:04269

The second, third, and fourth corrections to E[MP4/6-311G(d,p)] are analogous

to �EðþÞ . The zero point energy has been discussed in detail (scale factor 0.8929;

see Scott and Radom, 1996), leaving only HLC, called the ‘‘higher level correc-

tion,’’ a purely empirical correction added to make up for the practical necessity of

basis set and CI truncation. In effect, thermodynamic variables are calculated by

methods described immediately below and HLC is adjusted to give the best fit to a

selected group of experimental results presumed to be reliable.

Substituting calculated values for each of these energies in the case of methane,

�EðþÞ ¼ �40:4053269� ð�40:4050234Þ ¼ �0:00030

�Eð2d; f Þ ¼ �40:4246603� ð�40:4050234Þ ¼ �0:01964

� ¼ �40:4056666� ð�40:3976534Þ � ð�40:3795243Þ
þ ð�40:379232Þ ¼ �0:00772

�EðQCIÞ ¼ �40:4058874� ð�40:4050234Þ ¼ �0:00086

HLC ¼ �0:02000

EðZPEÞ ¼ þ0:04269
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The result of these corrections for methane is

E0 ¼ �40:40502� 0:00030� 0:01964� 0:00772� 0:00086� 0:02000þ0:04269
¼ �40:41085 hartrees

where all of the calculated energies are selected from the block of data at the end of

the G2 output file

MP2/6-311G(d,p)¼�40.379232

QCISD/6-311G(d,p)¼�40.4058874

MP4/6-311G(d,p)¼�40.4050234

MP2/6-311þ G(d,p)¼�40.3795243

MP4/6-311þ G(d,p)¼�40.4053269

MP2/6-311G(2df,p)¼�40.3976534

MP4/6-311G(2df,p)¼�40.4246603

MP2/6-311þ G(3df,2p)¼�40.4056666

The calculated result as we have found it by this dissection of the G2 method agrees

with the final result of the G2 script

G2 ¼ �40:4108546

G3. G3 theory (Curtiss et al., 1998) is very similar to G2 except that certain

refinements have been added to improve accuracy and computational efficiency.

The Pople group has devised a new basis function for the largest calculation called,

appropriately enough, G3large.

G2(MP2) and G3(MP2). Depending on your system, G2 and G3 calculations

may take a prohibitive amount of time or memory for a fairly modest increase in

molecular complexity. Don’t forget that ab initio calculations are much more

demanding than semiempirical calculations, so a ‘‘large molecule’’ in this field may

have only a few heavy (nonhydrogen) atoms. If you do research in this field, you

will soon run into the problem of long run times and you may get error messages

indicating that you have exceeded memory. For this reason, several members of the

G-n family have been written so as to use reduced basis set extensions, resulting in

shorter run times and smaller demands on memory space (Curtiss, 1999). Most

noteworthy are the G2(MP2) and G3(MP2) modifications, which do not use basis

set extensions above the second order or MP2 level. Somewhat surprisingly, these

methods give thermodynamic results that are almost as accurate as the parent

methods G2 and G3 and may even be slightly better for some subsets of molecules,

for example, hydrocarbons.

Energies of Atomization and Ionization

The energy of atomization of a ground state molecule at 0 K, for example, methane,

is the energy of the reaction

CH4ðgÞ ! CðgÞ þ 4 HðgÞ
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which we can calculate because we can calculate the ground state energies E0 for all

of the components of the reaction

�E0 ¼ E0ðCÞ þ 4E0ðHÞ � E0ðmethaneÞ
� 37:78432� 4ð0:50000Þ � ð�40:41085Þ ¼ 0:62653 hartrees

¼ 393:15 kcalmol�1 ð10-18Þ

This number is experimentally accessible and is 392.5 kcal mol�1 (Chase et al.,

1985).

The ionization energy

CH4ðgÞ ! CH4ðgÞþ

is calculated for the methyl cation in a similar way

�39:94759� ð�40:41085Þ ¼ 0:46326 h ¼ 12:61 eV

The experimental value is 12.62 eV and is positive for ionization of a stable

molecule.

We are now in a position to calculate the energy change of any reaction in the

gaseous state at 0 K

�E0 ¼
X

E0ðproductsÞ �
X

E0ðreactantsÞ ð10-19Þ
provided we have the computational resources to calculate E0 for all of its

components.

COMPUTER PROJECT 10-2 j Larger Molecules: G2. G2(MP2), G3,

and G3(MP2)

Calculate the energy change E0 for isomerization of cyclopropane to propene in the

gaseous state at 0 K

cyclopropane propene

using the G2, G2(MP2), G3, and G3(MP2) procedures.

Procedure. Depending on your system, the run times, especially G2 run times, for

these two molecules may be too long. If you have exclusive use of a system or if

you can make a congenial sharing arrangement, run them overnight. (A good deal

of research in this field happens while people are asleep.) It is good practice to work

up to the G-n calculations starting with simpler single-point calculations, for

example, STO-3G and 6-31G, to get an idea of the time requirements you will

be facing and to debug any small failings of your input file before committing it to a

long run.
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The experimental enthalpy of isomerization of cyclopropane is �isomH
298 ¼

�8:0� 0:2 kcal mol�1. Why is this enthalpy of isomerization negative? Evidently,

there is not much difference between computed values of �isomE0 and �isomH
298 as

obtained from the thermodynamic equations

�isomE0 ¼ [G2 (0 K)(propene)]� [G2 (0 K)(cyclopropane)]

�isomH
298 ¼ [G2 Enthalpy(propene)]� [G2 Enthalpy

(cyclopropane)]

We shall discuss this difference in the section on thermodynamic functions below.

The GAMESS Implementation

High-level molecular orbital calculations can be carried out with the freeware

program GAMESS [General Atomic and Molecular Electronic Structure System

(Schmidt et al. 1993, 1998)]. Input files can be written from the save command of

PCMODEL just as GAUSSIAN input files are. Input files are copied to the working

filename INPUT before a run, and output files are designated filename.out. We

ran our programs from a separate GAMESS directory. GAMESS is written for

professionals, so it is not quite as user friendly as the commercial program

GAUSSIAN, but it is by no means beyond the student level.

Exercise 10-9

Run a single point STO-3G calculation of the total energy of H2O at the MM3 geometry

in the GAMESS implementation. Compare your result with the identical calculation in

the GAUSSIAN implementation. Repeat the calculation using the double zeta valence

(DZV) and triple zeta valence (TZV) basis sets in the GAMESS implementations.

Comment on the relative energies calculated by single, double, and triple zeta basis sets.

Solution 10-9

Using PCMODEL, draw H2O. Minimize using the MM3 force field. Save to the filename

water.inp (or some such) in the GAMESS format. Copy to your GAMESS directory. Copy

to filename INPUT and be sure that PUNCH has been renamed to PUNCH.OLD or has

been erased entirely. Run using GAMESS.EXE> FILENAME.OUT. The INPUT file

$CONTRL SCFTYP¼ RHF COORD¼ CART $END

$BASIS GBASIS¼ STO NGAUSS¼ 3 $END

$DATA

water

Cn 1

H 1.0 �1.012237 0.210253 0.097259

O 8.0 �0.260862 0.786229 0.119544

H 1.0 0.489699 0.209212 0.142294

$END
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leads to

FINAL ENERGY IS �74.9610273642 AFTER 13 ITERATIONS

Repeat in the GAUSSIAN implementation. The .gif file

# sto-3g

wa

0 1

H 1.0 �1.012237 0.210253 0.097259

O 8.0 �0.260862 0.786229 0.119544

H 1.0 0.489699 0.209212 0.142294

leads to

7 basis functions 21 primitive gaussians

and

SCF Done: E(RHF) ¼ �74.9610207086 A.U. after

4 cycles

Double zeta valence or triple zeta valence calculations can be carried out by putting

DZV or TZV in place of STO NGAUSS¼ 3 in the second line of the INPUT file in the

GAMESS implementation. The calculated energies become progressively lower (better)

for double and triple zeta basis sets

FINAL ENERGY IS �76.00923

FINAL ENERGY IS �76.02007

but they approach a limit.

COMPUTER PROJECT 10-3 j The Bonding Energy Curve of

H2: GAMESS

Plot the curve of the bond energy of H2 vs. internuclear distance for the H2

molecule using the STO-3G, double zeta valence (DZV), and triple zeta valence

(TZV) basis sets in the GAMESS implementation.

Procedure. Carry out the STO-3G single point calculations on H2 in a way

similar to that of Exercise 10-9 at interatomic distances of 0.4 to 1.2 Å at intervals

of 0.1 Å. This is best done in the z-matrix format, for example,

$CONTRL SCFTYP¼ RHF COORD¼ ZMT $END

$BASIS GBASIS¼ STO NGAUSS¼ 3 $END

$DATA
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hydrogen

Cn 2

H 1.0

H 1.0 1.0

$END

for a bond distance of 1.0 Å, where z-matrix format is signified in the input as

COORD¼ ZMT. This input file results in

TOTAL ENERGY¼�1.0661086701

as part of the output data block. Double and triple zeta basis sets are obtained by

replacing STO NGAUSS¼ 3 with DZV or TZV.

The Thermodynamic Functions

The output of a G3(MP2) calculation for propene, for example,

G3MP2(0 K)¼ 117.672791

which we have called E0[G3(MP2)], is the energy of the molecule in the ground

state and in the gas phase at 0 K relative to isolated nuclei and electrons. From a

theoretical point of view, the problem is solved, but for practical purposes, we

would like to have the enthalpy of formation in the standard state �f H and the

Gibbs free energy of formation in the standard state�f G at some other temperature,

most importantly, 298 K.

First, we would like to change the reference state from the isolated nuclei and

electrons to the elements in their standard states, C(graphite) and H2(g) at 298 K.

This leads to the energy of formation at 0 K�f E0, which is identical to the enthalpy

of formation �f H0 at 0 K. The energy and enthalpy are identical only at 0 K. Next

we would like to know the enthalpy change on heating propene from 0 to 298 K so

as to obtain the enthalpy of formation from the isolated nuclei and electrons

elements H298. This we will convert to �f H
298 from the elements in their standard

states at 298 K. From that, with the absolute entropy S of propene at 298, we arrive

at the standard Gibbs free energy of formation �f G
298, which leads to the

equilibrium constant at 298 K for reactions involving propene. Classical thermo-

dynamic equations permit these conversions to be carried out in a straightforward

way, but because the heat capacities CP and absolute entropies S are usually not

known over a wide range of temperatures, the power of statistical thermodynamics

is also brought to bear.

The entire procedure can be carried out in steps. We find the ground-state energy

of formation of propene at 0 K from C and H atoms in the gaseous state

CðgÞ þ 3HðgÞ ! C3H6ðgÞ
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by subtracting the energy of formation of C(g) and H(g) in the ground state at 0 K

relative to their constituent isolated nuclei and electrons, from the energy of

formation of propene(g) in the ground state relative to its constituent isolated

nuclei and electrons (Fig. 10-4).

The result of this calculation is �1:29373 hartrees ¼ �811:82851 kcal mol�1.

To this we add the energy of formation of C(g) and H(g) from the elements in the

standard state, C(graphite) and H2(g) (Fig. 10-5).

We now know the energy of the propene thermodynamic state {propene(g)}

relative to the state {3 C(g) and 6 H(g)} and the energy of the thermodynamic

standard state of the elements relative to the same state {3 C(g) and 6 H(g)}, which

is opposite in sign to the summed energies of formation of 3 C(g) and 6 H(g). The

energy difference between these thermodynamic states is

�811:82851þ 509:94þ 309:78 ¼ 7:89 kcal mol�1

which is the energy of formation at 0 K �f E0 of propene(g) (Fig. 10-6).

-117.67279

3(-37.78934)

6(-0.50184)

-1.29373

C and H nuclei and electrons

Figure 10-4 The Energy of

Formation of C3H6(g) from 3

C(g) and 6 H(g).

3(169.98)

6(51.63)

3C(g) + 6H(g)

C(graphite)

H2(gas)
Figure 10-5 Formation of Gaseous Atoms

from Elements in the Standard State.

3(–169.98)

6(–51.63)

3C(g) + 6H(g)

H2(gas)+ C(graphite)propene(g)

–811.82

Figure 10-6 Energies Leading to the

Energy of Formation of Propene (g).
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The same series of calculations starting with

G3MP2 Enthalpy¼�117.667683

lead to �f H

 ¼ �f H

298, except that the enthalpies of formation of gaseous atoms

are 169.73 kcal mol�1 from C(graphite) and 101.14 kcal mol�1 for H2(gas) at

298.15 K. These give

�f H
298ðpropeneðgÞÞ ¼ 4:29 ¼ kcal mol�1

as compared to the experimental value of 4:78� 0:19 kcal mol�1.

The remaining question is how we got from G3MP2(0 K)¼�117.672791 to

G3MP2 Enthalpy¼�117.667683. This is not a textbook of classical thermo-

dynamics (see Klotz and Rosenberg, 2000) or statistical thermodynamics (see

McQuarrie, 1997 or Maczek, 1998), so we shall use a few equations from these

fields opportunistically, without explanation. The definition of heat capacity of an

ideal gas

CV ¼ qE
qT

� �
V

leads toð
dE ¼

ð
CV dT

and

E298 ¼ E0 þ
ð298
0

CV dT

To evaluate this integral, we must know CV as a function of temperature, and

usually this is not known.

Statistical thermodynamics tells us that CV is made up of four parts, transla-

tional, rotational, vibrational, and electronic. Generally, the last part is zero over the

range 0 to 298 K and the first two parts sum to 5/2 R, where R is the gas constant.

This leaves us only the vibrational part to worry about. The vibrational contribution

to the heat capacity is

Evib ¼ RT
x

ex � 1

where

x ¼ �Evib

kBT
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We don’t know �Evib but we can approximate it from the vibrational spacing of the

bond vibrations in the harmonic oscillator approximation.

When these four (or three) contributions are summed for a molecule such as

propene, we have the thermal correction to the energy G3MP2(0 K). The result is
G3MP2 Energy in the G3(MP2) output block. To this is added PV, which is equal

to RT for an ideal gas, in accordance with the classical definition of the enthalpy

H ¼ E þ PV ¼ E þ RT

The sum of the energy correction for heating the molecule from 0 to 298 K plus RT

is called the thermal enthalpy correction (TCH) and yields

G3MP2 Enthalpy¼�117.667683

in the output block of the G3(MP2) calculation

G3MP2(0 K)¼�117.672791

G3MP2 Energy¼�117.668627

G3MP2 Enthalpy¼�117.667683

G3MP2 Free Energy¼�117.697857

One can obtain THC for the G2 or G3 family of calculations by taking G3MP2
Enthalpy� G3MP2(0 K).

From the third law of thermodynamics, the entropy S ¼ 0 at 0 K makes it

possible to calculate S at any temperature from statistical thermodynamics within

the harmonic oscillator approximation (Maczek, 1998). From this, �S of formation

can be found, leading to�f G
298 and the equilibrium constant of any reaction at 298 K

for which the algebraic sum of �f G
298 for all of the constituents is known. A

detailed knowledge of �S, which we already have, leads to Keq at any temperature.

Variation in pressure on a reacting system can also be handled by classical

thermodynamic methods.

One can now see why there is not much difference between computed values of

�isomE0 and�isomH
298 as obtained from the thermodynamic equations in Computer

Project 10-2

�isom¼ [G2 (0 K)(propene)]� [G2 (0 K)(cyclopropane)]

�isomH
298¼ [G2 Enthalpy(propene)]�

[G2 Enthalpy(cyclopropane)]

The difference between the energy of a molecule at 0 K and its enthalpy at 298

depends on the thermal contribution due to vibration at the two temperatures. If the

molecule in question is rigid, with few vibrational degrees of freedom, this

contribution will be small, as it is for propene and cyclopropane. For larger

molecules with a good deal of vibrational freedom, the difference will be

correspondingly larger.
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Koopmans’s Theorem and Photoelectron Spectra

In studying molecular orbital theory, it is difficult to avoid the question of how

‘‘real’’ orbitals are. Are they ‘‘mere’’ mathematical abstractions? The question of

reality in quantum mechanics has a long and contentious history that we shall not

pretend to settle here but Koopmans’s theorem and photoelectron spectra must

certainly be taken into account by anyone who does.

Koopmans proposed that the orbital structure of a cation Mþ ought to be nearly

the same as that of the molecule that engenders it, so that the amount of energy

necessary to remove electrons from a stable molecule by hitting it with high-energy

photons

hnþM ! Mþ þ e�

ought to be equal and opposite to the energy of the orbitals they come from. (Note

that we have been using Koopmans’s theorem implicitly in our thermochemical

calculations.) If more than enough energy is supplied to a molecule to drive

electrons from one or more molecular orbitals, different excess energies Eexcess

should be imparted to them according to the binding energy they had in their

orbitals

Ein � Eorb ¼ Eexcess

The excess energies can be measured for a known Ein by essentially a stopping

potential method, giving a spectrum. This spectrum is then matched with calculated

orbital energies (eigenvalues) derived from molecular orbital calculations.

Exercise 10-10

The measured energy spectrum of ethylene is shown in Fig. 10-7.

Ionization Potential, eV

8 10 12 14 16

Electron
Emission
Intensity

Eigenvalues, eV

8 10 12 14 16

Figure 10-7 Photoelectron Spectrum

of Ethylene. Energies of the highest

three eigenvalues, converted to eV, are

shown below the spectrum.
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The occupied eigenvalues of ethylene according to a 6-31G calculation are

Alpha occ. eigenvalues -- �11.23781 �11.23620 �1.03132

�0.77980 �0.63720

Alpha occ. eigenvalues -- �0.57707 �0.49601 �0.37194

Match the energies of the three highest orbitals with the peaks in Fig. 10-7.

Solution 10-10

The highest eigenvalues have the smallest (negative) energies in the third line of occupied

eigenvalues. Converted to electron volts (conversion factor 27.21, with a change in sign),

they are 15.7, 13.5, 10.1 eV, respectively. Quantitatively, the match isn’t as good as we

might wish. Nevertheless, we have sound evidence of three molecular orbitals with

energies in the vicinity of the three highest 6-31G eigenfunctions. Remember that the

orbital structure of the cation is not really the same as that of the neutral molecule; that is

an approximation.

Larger Molecules I: Isodesmic Reactions

Granting that absolute energy calculations may be very accurate by G2 and G3

methods, they are also very demanding of computer resources. Long ago Warren

Hehre (1970) suggested a method for determining relative energies by using lower-

level molecular orbital calculations in such a way that the error cancels across an

isodesmic reaction. An isodesmic reaction is a reaction in which the number of

bonds and bond types are the same on either side of the reaction but their

arrangement is different. This permits determination of the enthalpy of reaction

and thus the enthalpy of formation of one component of the reaction provided that

all the others are known.

Because the �f H
298 values of many small molecules are known (Pedley, 1986)

to within 0.1 or 0.2 kcal mol�1, one need not start with atoms in the hypothetical

formation reaction as in the sections on energies of atomization and ionization and

the thermodynamic function above. One can build up the target molecule from

smaller molecules rather than from atoms. Suppose again, for illustrative purposes,

that we make believe we don’t know �f H
298 of propene but we do know �f H

298 of

the simpler C2 hydrocarbons ethene and ethane along with �f H
298 of methane. An

isodesmic reaction containing these enthalpies is

CH2����CH2ðgÞ þ CH3��CH3ðgÞ ! CH3CH����CH2ðgÞ þ CH4ðgÞ ð10-20Þ

Note that, for thermochemical purposes, there is no requirement that we can

actually carry out the reaction. Systematic computational errors will, in some

measure, cancel between the right and left sides of isodesmic reactions (10-20),

giving an estimate of the �fH
298. GAMESS calculations at the STO-3G level lead

to total energies of

�77:073955þ ð�78:306180Þ ! �115:660299þ ð�39:726864Þ
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obtained from the ENERGY COMPONENTS section of the output file. The calculated

enthalpy of reaction is

�H298ðreactionÞ ¼
X

np�f H
298ðproductsÞ �

X
nr�f H

298ðreactantsÞ
¼ 7:028 millihartreesðmhÞ ¼ 4:41 kcal mol�1: ð10-21Þ

where np and nr are the appropriate stoichiometric coefficients. The calculated

�rH
298 above and the experimental �f H

298 for CH4(g), CH2����CH2(g), and

CH3��CH3(g), which are �17.90, 12.54, and �20.08 kcal mol�1; respectively

(Pedley, 1986), leave only the unknown �f H
298 (propene) in the equation

4:41 ¼ �fH
298ðpropeneÞ � 17:90� ð12:54� 20:08Þ

�fH
298ðpropeneÞ ¼ 5:95 kcal mol�1

This compares with the G3(MP2) value of�f H
298ðpropeneÞ ¼ 4:29 kcal mol�1 and

the corresponding experimental value of �f H
298ðpropeneÞ ¼ 4:78� 0:19 kcal

mol�1.

Exercise 10-11

Carry out a calculation of �f H
298 (propene) at the 6-31G MP2 level of theory in the

GAMESS implementation.

Solution 10-11

The required TOTAL ENERGY entries are

� 117:29857� 40:27913 � ð�78:18420þ ð�79:38560ÞÞ
¼ �0:00790 h ¼ �4:96 kcal mol�1

�f H
298ðpropeneÞ ¼ 4:96� 10:36 ¼ �5:40 kcal mol�1

as contrasted to the G3(MP2) value of �f H
298ðpropeneÞ ¼ 4:29 kcal mol�1 and the

experimental value of �f H
298ðpropeneÞ ¼ 4:78� 0:19 kcal mol�1.

A second issue that arises in relation to isodesmic reaction enthalpies is why

they should exist at all. If all we are doing is rearranging bonds, shouldn’t the

summed bond energies be the same on either side of the reaction? Not really. A

negative 6-31G MP2 enthalpy of 5 kcal mol�1 for the reaction

CH2����CH2ðgÞ þ CH3��CH3ðgÞ ! CH3CH����CH2ðgÞ þ CH4ðgÞ
tells us that the thermodynamic state on the right containing propene is more stable

than the thermodynamic state consisting of the simpler molecules on the left. We

recognize this enthalpy difference as the ‘‘hyperconjugation’’ stabilization that a

methyl group exerts on an a double bond, and we find that it is about 5 kcal mol�1

in the 6-31G MP2 model chemistry. At this level of accuracy, distinctions among

the terms energy, enthalpy, and free energy are usually not made and they are used
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as though they were synonymous. Other stabilization or destabilization enthalpies

are reflected in isodesmic reactions, for example, the enthalpy �rH
298 of the

isodesmic reaction

2+3

3ð�234:18629Þ ! �231:82430þ 2ð�235:39571Þ
�rH

298 ¼ �0:05685 h ¼ �35:7 kcal mol�1

ð10-22Þ

is a measure of the ‘‘resonance energy’’ of benzene.

COMPUTER PROJECT 10-4 j Dewar Benzene

In the mid-nineteenth century, the empirical formula of benzene, C6H6, was known

but its structural formula was not. Two proposed structures

are called Kekule benzene (cyclohexatriene) and Dewar benzene after the chemists

who proposed them. Neither formula is in accordance with the relative stability of

actual benzene, which is given in formula 1 below

1 2 3 4

Within the last decade or so, these three remarkable isomers of benzene (2–4) have

been synthesized (with considerable difficulty). The purpose of this computer

project is to obtain the energies, enthalpies, or Gibbs free energies of compounds

(1–4) and rank them according to energy on a vertical scale with the highest at the

top.

Procedure

A. Obtain the energies of benzene (1), Dewar benzene (2), benzvalene (3), and

prismane (4), all of which have the empirical formula C6H6, in either the

GAUSSIAN or GAMESS implementation and at a level of theory [6-31G(d),

etc.] of your choosing. Your choice of implementation and level will likely be

dictated by the power of the computer system you have. Construct a graph

showing the energies of the four isomers on a vertical scale. Comment on the

graph you obtain (see Li et al., 1999).
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B. Dewar benzene (2) exists as cis and trans isomers. Draw structures of the two

forms, construct the appropriate input files and determine the cis-trans

isomerization energy of (2).

3,30-Bicyclopropenyl

is also an isomer of benzene. Obtain the energy of 3,30-bicyclopropenyl, locate the
corresponding point on the energy diagram from Part A, and use this result to

speculate on the origin of the strain energy evident in prismane.

Larger Molecules II: Density Functional Theory

A functional is a function of a function. Electron probability density r is a function

r(r) of a point in space located by radius vector r measured from an origin

(possibly an atomic nucleus), and the energy E of an electron distribution is a

function of its probability density, E ¼ f ðrÞ. Therefore E is a functional of r

denoted E ¼ ½rðrÞ�.
The first Hohenberg–Kohn theorem states that, for a nondegenerate ground state,

there is a one-to-one mapping among r, V, and c0

rðrÞ $ VðrÞ $ c0 ð10-23Þ
where V is the potential energy, and c0 is the wave function at a given potential, that

is, c0 is a functional of V and of r

c0 ¼ c0½V � ¼ c0½r� ð10-24Þ
All properties, in particular the energy, are functionals of r because

E½r� ¼
ð1
�1

c0½r�Ec0½r�dt ð10-25Þ

Density Functional Methods. The Kohn–Sham equations are

Kci ¼ Eici ð10-26Þ

where K is an operator

K ¼ f�r2
i �

X
ZI=rIi þ

ð
rðr2Þ=r12dr2 þ VXCðr1Þg ð10-27Þ

analogous to the Fock operator in Hartree–Fock theory [Eqs. (9-1)–(9-10)] for

electron 1 in the vicinity of electron 2
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where ZI is the nuclear charge. In the K operator as written above, the exchange

part of the Hartree–Fock operator is conspicuous by its absence and a new term

VXCðr1Þ appears in its place. The Kohn–Sham equations are one-electron equations

and ci is a one-electron space orbital such that

rðrÞ ¼
X

cij j2 ð10-28Þ

The first three terms in Eq. (10-26), the electron kinetic energy, the nucleus-electron

Coulombic attraction, and the repulsion term between charge distributions at points

r1 and r2, are classical terms. All of the quantum effects are included in the

exchange-correlation potential VXC

VXC ¼ dEXC

dr
ð10-29Þ

a functional derivative (Atkins and Friedman, 1997). The sum of the three classical

energies in Eq. (10-26) plus the exchange-correlation energy EXC is the total

energy.

EXC can be treated as the sum of two parts, the exchange energy and the

correlation energy, EXC ¼ EX þ EC. Each of the parts can be treated under the local

density approximation or with gradient functionals.

(1) One approach, using a local density approximation for each part, has

EXC ¼ ES þ EVWN, where ES is a Slater functional and EVWN is a correlation

functional from Vosko, Wilk, and Nusair (1980). Both functionals in this

treatment assume a homogeneous electron density. The result is unsatisfactory,

leading to errors of more than 50 kcal mol�1 for simple hydrocarbons.

(2) Gradient functionals do not assume constant charge (electron) density, but treat

variation of charge density in space. Combining two gradient functionals as in

the BLYP approximation, EXC ¼ EB þ ELYP where EB is from Becke (1988)

and ELYP is the Lee, Yang, and Parr (1988) functional, brings about a dramatic

improvement in agreement with experiment, reducing the average difference

between calculated and experimental values to less than 3 kcal mol�1 for the

test compounds acetylene, ethylene, and ethane.

The notation B3LYP denotes a 3-parameter empirical functional that expresses

two parts of the exchange-correlation energy EXC ¼ EX þ EC, the first part being

local and the second part a gradient approximation (Foresman and Frisch, 1996;

Baerends and Gritsenko, 1997). The first part is further broken down into a local

density approximation to the exchange energy

EX
LDA ¼ �3

2
3=4pð Þ

ð
r4=3dt ð10-30Þ

plus a term that corrects the difference between the Hartree–Fock exchange energy

and the local density approximation using an adjustable parameter c0 multiplied
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into the difference between the Hartree–Fock exchange energy and EX
LDA. This

product enters into the exchange-correlation energy as

EX ¼ EX
LDA þ c0ðEX

HF � EX
LDAÞ þ cX�EX

B88 ð10-31Þ

where

�EX
B88 ¼ EX

LDA � g
ð

r4=3x

ð1þ 6g sinh�1 xÞ dt x ¼ r�
4
3jrrj ð10-32Þ

and �EX
B88 is a gradient correction from Becke (1988).

A similar thing is done with the second part of the B3LYP hybrid, which is also

comprised of two terms

EC ¼ EC
VWN3 þ ccðEC

LYP � EC
VWN3Þ ð10-33Þ

the local density approximation to EC
VWN3 due to Vosko, Wilk, and Nussair (1980)

corrected by the Lee, Yang, and Parr term EC
LYP, which enters as the correction

EC
LYP � EC

VWN3 premultiplied by an adjustable parameter cc. B3LYP is arguably the

best estimate of EXC in current use; it produces agreement with experiment that is

within 1.3 kcal mol�1 for the three simple test hydrocarbons methane, acetylene,

ethylene and ethane.

In hybrid DFT-Gaussian methods, a Gaussian basis set is used to obtain the best

approximation to the three classical or one-electron parts of the Schroedinger

equation for molecules and DFT is used to calculate the electron correlation. The

Gaussian parts of the calculation are carried out at the restricted Hartree–Fock

level, for example 6-31G or 6-311G(3d,2p), and the DFT part of the calculation is

by the B3LYP approximation. Numerous other hybrid methods are currently in use.

The most obvious practical difference between density functional theory (DFT)

calculations and the G-n family calculations is that DFT calculations are single-

point, single-electron calculations whereas each of the G-n family of calculations

consists of a suite of calculations, each utilizing a Gaussian basis set and a post

Hartree–Fock extension to arrive at the total energy (E0) of a molecule. Because

they are single-point calculations, we might expect that other things being equal,

DFT calculations will be less demanding of computer resources than the G-n family

of calculations. Indeed they are, but the saving is not as great as one might expect

because integrals (10-30) and (10-32) and others like them (Foresman and Frisch,

1996) cannot be solved to give a simple form. They are solved numerically over a

closely spaced grid in 3-space, a method that can be time-consuming. Moreover,

there are ancillary calculations to be carried out as described in the procedure

section of Computer Project 10-5.

If the B3LYP run time for calculating E0 of H2O is arbitrarily taken as 1, O2

(triplet) and CO2, run times scale as 1.5 and 2.5 for the B3LYP calculational

procedure and 2, 7.5, and 15 for the same three molecules calculated by G2 (Pan

et al., 1999). Taking the B3LYP run time as 1 for methane, the run times for
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methane, ethane, propane, and cyclobutane scale roughly as 1, 14, 54, and 137 for

B3LYP calculations and 13, 163, 929, and 2351 for G2. These ratios are somewhat

less favorable to DFT if the geometry minimization time is counted in, but they

become more favorable to DFT calculations on larger molecules.

COMPUTER PROJECT 10-5 j Cubane

Cubane, a hypothetical molecular curiosity for many years, has been synthesized

and is receiving attention because it is a highly energetic molecule, storing angular

strain energy in its distorted sp3 bonds. In principle, at least, the strain energy can

be released in a stepwise fashion by adding hydrogen across edges of the cube, one

edge at a time until the strain-free molecule 3,4-dimethylhexane is reached. If you

have access to a power system, determine the enthalpy change of the reaction

sequence in Fig. 10-8 by the G3(MP2) method, thereby estimating the strain energy

of cubane. Most of the structures represent molecules that have not been isolated,

but two experimental checkpoints do exist, a value of �fH
298 ¼ 148:7� 2:0 kcal

mol�1 for cubane and �50:7� 0:2 kcal mol�1 for 3,4-dimethylhexane, the end

product of this sequential hydrogenation.

Procedure. Start with an optimized geometry using, for example, the MM3

minimization of PCMODEL. The default keyword b3lyp in the GAUSSIAN

implementation will result in a rapid but inaccurate STO-3G calculation. Despite

the inadequacy of STO-3G calculations on an absolute basis, they show trends and

are useful for determining enthalpies of isomerization or hydrogenation, both of

which are isodesmic.

For �f H
298 calculations from B3LYP theory, one must correct for zero point

energies and make a thermal correction for the enthalpy change from 0 to 298 K.

These ancillary corrections can be found from the -Thermochemistry- section

by using the freq keyword in the appropriate model chemistry. Basis sets given in

Computer Project 10.6.1 can be combined to form a compound keyword. The

compound keyword 6-31G b3lyp is recommended for this project.

PROBLEMS

1. Write a program in BASIC to calculate the dissociation energy of Hþ
2 . This can

be done by filling in an appropriate data block using one or more DATA

statements.

2. As an interesting variation on this experiment, one can try reading in the

experimental data from an external file. The student should do some outside

H2 H2 H2 H2 H2

Figure 10-8 Sequential (Hypothetical) Hydrogenation of Cubane to 3,4-Dimethylhexane.
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reading on advanced BASIC and should include a discussion of external file

handling with this laboratory report.

3. The molecule HgH has vibrational lines at 1204, 966, 632, and 172 cm�1.

Construct the Birge–Spooner plot for this molecule and find its dissociation

energy D0 and bond energy De.

4. The first five vibrational energy levels of HCL are at 1482, 4367, 7149, 9827,

and 12 400 cm�1. Find the dissociation energy and bond energy of HCl.

5. Diatomic molecules, which are anharmonic oscillators, produce vibrational

spectra that not only decrease in energy for the higher transitions but decrease

in intensity as well, so that the principal line is for the transition from the

ground state to the first excited state. Using the G2 calculated bond strength for

H2, predict the wavelength of the predominant line in the vibrational spectrum

of H2.

6. Sketch the hydrogen molecule system (2 protons and 2 electrons) and verify the

Hamiltonian 10.3.1.

7. Carry out a series of calculations comparable to those in Computer Project 10-1

on the hydrogen molecule. Estimate the correlation energy from the GAUS-

SIAN calculations.

8. Write a program in BASIC to calculate �fE
298 from the output of G3MP2.

9. Write a program in BASIC to calculate �fH
298 from the output of G3MP2.

10. Combine the answers to Problems 8 and 9 to calculate both �fE
0 and �fH

298.

11. Repeat the calculation in Exercise 10-7 using the G3 method in the GAUS-

SIAN implementation.What is the% difference between G2(0K) andG3(0K)?
12. Increase the dimension of a one-dimensional box containing an electron from

a¼ 1.0 Å to a¼ 1.1 Å (from 1.9 bohr to 2.1 bohr). What happens to the energy

of the system? What is the % change?

13. Repeat the analysis of the G2 calculation in the section on G2 and G3 in this

chapter for the acetylene molecule.

14. Calculate E0[G2] for the methyl cation CHþ
4 . Check your result against the

value used in the section on energies of atomization and ionization in this

chapter.

15. What is the energy of atomization of Hþ
2 in the STO-3G approximation? Carry

out the calculation in the GAUSSIAN implementation.

16. What is the energy of atomization of Hþ
2 in the STO-3G approximation? Carry

out the calculation in the GAMESS implementation.

17. What is the energy of atomization of methane in the STO-3G approximation?

Carry out the calculation in both the GAUSSIAN and GAMESS implementa-

tions.

18. Calculate the G2 value of E0 for H(g) and C(g) for use in the section on

thermodynamic functions in this chapter.

19. Run the GAMESS input file for Exercise 10-9 using the commands GAMESS.

EXE> FILENAME.OUT. Erase PUNCH and run the same input file using

gamess> fi or gamess> fi. Does it run? Try several other combinations of

upper and lower case letters in the run command. Try leaving out the space

before>.
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20. Water has a photoelectron spectrum with peaks at 539.7 32.2, 18.5, 14.7, and

12.6 eV. Using the method of Exercise 10-10, match the Hartree–Fock energies

of H2O calculated at the 6-31G level in the GAMESS implementation. Is the fit

better than it is in Exercise 10-10? Why is one peak so far from the others?

21. Use the experimental values of the enthalpies given in the section on isodesmic

reactions along with the isodesmic reaction

2CH3��CH3ðgÞ ! CH3CH2CH3ðgÞ þ CH4ðgÞ
to determine the �fH

298 of propane(g). The experimental value is �25:02�
0:12 kcal mol�1

22. Dopamine (DOPA)

CH2CH2NH2

HO

HO

is one of a group of psychoactive substances that includes adrenaline. The

electronic structure of this molecule promises to be complicated because it has

two electronegative oxygens and an electronegative nitrogen interacting across

a benzene ring with mobile electrons. Draw an electron map of DOPA showing

regions of relative negative charge (use color if you like). Comment on which

part of the molecule is likely to interact with the brain, causing psychoactivity.

Write a short essay on the psychoactive properties of DOPA and mechanisms

proposed for it from your outside reading.

23. What is the average energy release per bond on breaking bonds in cubane?

Compare this with the energy released on hydrogenation of ethylene.

24. Butyric acid,

CH3CH2CH2C
O

OH

is found in rancid butter, stale sweat, and organic chemistry laboratories. Plot

the energy of acetic, propanoic, and butyric acids calculated at the 6-31G MP2

level in the GAMESS implementation and find the equation of the curve you

obtain.

25. Based on the equation found in Problem 23, estimate the total energy of n-

pentanoic acid by extrapolation to 5 carbon atoms. Carry out the calculation at

the 6-31G MP2 level in the GAMESS implementation and determine the %

difference between the GAMESS calculation and the extrapolated estimate.
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A P P E N D I X

A
Software Sources

This appendix is a brief and incomplete introduction to software useful computa-

tional chemistry for the PC. The order below is approximately the order in which

the programs are used in the text.

QBASIC is available as part of the DOS 6.0 operating system. Though DOS 6.0 has

been supplanted by more complicated operating systems, it is still available at a

modest price (<$50). Two companies offering DOS 6.0 at this writing are

www.bigclearance.com and www.buycheapsoftware.com. Computer software com-

panies have a tendency to come and go, so a good strategy for locating sources is to

consult a recent copy of PC Magazine or an equivalent publication. Help in using

QBASIC can be found by executing the online DOS Help command. Many sources

on the BASIC language exist, for example, Coan, J. S., Advanced Basic, Hayden

Book Co. Inc., 1977.

True BASIC. Several modestly priced versions (starting <$50) of True BASIC

are available from its authors at True BASIC Inc., 1523 Maple St., Hartford,

VT 05047-0501 (www.truebasic.com). True BASIC is transportable to many

operating systems, including Unix and Linux. Detailed tutorial manuals are

available, including one on numerical methods.
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BASIC programs referred to in the text can be found at the Wiley website

(www.wiley.com). They were written by the author and may be copied and modified

in any way you please.

Mathcad is a product of MathSoft Engineering & Education, Inc., 101 Main Street,

Cambridge, MA 02142-1521. Tel: þ1-617-444-8000, Fax: þ1-617-444-8001

(www.mathcad.com).

This software is available to academic institutions at reduced price from

Academic Superstore, Suite A110, 223 W. Anderson Ln., Austin, TX 78752.

TableCurve is available from Systat Software Inc., 501 Canal Boulevard, Suite F,

Richmond, CA 94804-2028 (http://www.systat.com/products/tablecurve2d/). A free

trial version of TableCurve is available at this web site. Systat offers other curve-

fitting and statistical software.

SigmaPlot is available from SPSS Science, 233 S. Wacker Dr. 11th Floor, Chicago,

IL 60606-6307 (www.sigmaplot.com). These companies have been ‘‘acquisitioned

and merged’’ in the way that big-time business moguls so love to do. You may have

to follow a trail to find the current name of the program and company you want.

Excel is part of Microsoft Works, Microsoft

PCMODEL v 8.0 1993–2002 is available from Serena Software, Box 3076,

Bloomington, IN 47402-3076 (www.serenasoft.com).

Molecular Mechanics
Academic and other nonprofit institutions can get MM3 from qcpe.chem.indiana.

edu. The commercial source is Tripos Inc., 1699 South Hanley Road, St. Louis, MO

63144. For resources on MM3 and MM4 see references 1–3 in Langley, C. H. and

Allinger, N. L., J. Phys. Chem. 2003, 107, 5208–5216.

Tinker (J. W. Ponder, Washington University School of Medicine, St. Louis, MO) is

available at dasher.wustl.edu/tinker.

Huckel MO ccl.net
go to ccl.net ! MS-DOS ! Huckel-MO-Calculator ! hmo10.zip and unzip

Copyright # 1996 by Ajit J. Thakkar.

Semiempirical
MOPAC (freeware) Victor Lobanov, 1996, University of Florida ccl.net

(http://ccl.net/cca/software/MS-DOS/mopac_ for_dos/index.shtml)

go to ccl.net ! MS-DOS ! mopac_for_dos ! mopac_for_dos.zip and unzip

See Stewart, J. J. P., Computer-Aided Molecular Design 1990, 4, 1.
Arguslab (www.planaria-software.com).
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Ab Initio
GAUSSIAN Copyright # 1988, 1990, 1992, 1993, 1995, 1998 Gaussian, Inc.

All Rights Reserved. (copyright # 1983 Carnegie Mellon University). Gaussian is

a federally registered trademark of Gaussian, Inc.

Gaussian 98. Revision A.4, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,

G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.;

Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin,

K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V; Cossi, M; Cammi, R.;

Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.;

Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari,

K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko,

A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.;

Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.;

Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.;

Head-Gordon, M.; Replogle, E. S.; and Pople, J. A. Gaussian, Inc., Pittsburgh, PA,

1998.

GAMESS http://www.msg.ameslab.gov/gamess/GAMESS

go to http://www.msg.ameslab.gov/gamess/GAMESS

Follow the path How to get GAMESS ! PC ! PC GAMESS etc.

Note that this program is not exactly ‘‘freeware,’’ but it is ‘‘a site license at no

cost,’’ which means (I think) that you can’t package it and sell it to someone who’s

not hip enough to get it for himself.

See (a) Schmidt, M. W.; Gordon, M. S. Ann. Rev. Phys. Chem. 1998, 49, 233–266

(b) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.;

Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nugyen, K. A.; Su, S.; Windus, T. L.;

Dupuis, M.; Montgomery, J. A. J. Comp. Chem. 1993, 14, 1347–1363.
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Index

Ab initio, 241, 277, 299

Absolute entropy, 24

Absorbance, 53, 83, 88

Absorptivity, 83

Adamantane, 168

Algorithm, 2, 47

Allinger, N. L., 102, 112

Allyl, 189, 192, 216, 253

AM1, 279

AMBER, 112, 114

Amplitude, 95

constant, 135

Angular frequency, 94,133

Anharmonicity, 116, 301

Antibonding

orbital, 175

Antisymmetrized

orbital, 270, 273, 275

wave function, 256

Antisynchronous mode, 137

Approximate theoretical energies, 304

Arguslab, 282
Arithmetic mean, 61, 62, 70

Aromaticity, 156, 219

Asynchronous motion, 137

Atomic

coordinates, 102, 104, 107

orbitals, 22

units, 173

Atomization enthalpy, 57

b vector, 46

B3LYP, 328

BASIC, 6

Basis, 75

function, 175

set, 90, 175, 202, 309, 310, 311

set improvement, 306

Beer’s law, 83

Bending mode, 116

Benson, S. W., 57

Benzene, 157, 225, 291, 326

Benzopyrene, 292

Beyond Huckel theory, 231

Bicyclo[3.3.0]octane, 165

Bicyclohexatriene, 225

Bicyclopropenyl, 327

Binary solution, 77

Biphenyl, 225

Birge Sponer plot, 303
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Blackbody radiation, 2

Block matrices, 143

Bohr theory, 178

Boltzmann

constant, 74

distribution, 151

Bond

additivity, 57

angle, 98

energies of hydrocarbons, 89

energy, 145, 302, 307, 309

enthalpies, 56

enthalpies of hydrocarbons, 56

length, 300

order, 214, 253

Bonding

energy curve of H2, 318

orbital, 175, 211

Born Oppenheimer approximation, 172, 264

Bosons, 266

But-1-ene, 128, 168, 218

But-2-ene, 148

Butadiene, 190, 215, 218

Butadienyl, 190

Butane, 123, 125

conformational mix, 125

Butyric acid, 332

Calculated energy, 306

Calculation of Keq at 298 K, 164

Calibration surfaces, 80 ff

not passing through the origin, 88

Carcinogenesis, 291

Cartesian space, 98, 142, 173

CBS-4, 241

CGTOs, 310

Charge

correlation, 274

densities, 211, 253

Cholesterol, 17

CI, 256, 312

CID, 312

CIS, 312

cis-But-2-ene, 148

CIT, 312

CLS, 13

Coefficient

matrix, 45

of determination, 70

Column matrix, 40

Complete set, 242

Complex

conjugate, 42, 266

matrices, 42

plane, 294

Confidence level, 17

Configuration, 156, 178

interaction, 255, 256

Conformable, 32

Conformation, 120, 125

anti, 121, 125

gauche, 121, 125

Conformational mix, 126, 151, 152

search, 127

space, 166

Conrotatory, 227

Conservation of orbital symmetry, 227

Conservative system, 95

Contracted Gaussian type orbitals, 310

Contractions, 242

Convergence, 2, 6

Cookie, 293

Core, 222, 243

potential, 176

Correlation energy, 312

Coulomb integral, 183

Coulombic energy, 124

Coupled mases, 141

Coupling, 131

forces, 143

Cramer’s rule, 50, 64

Cross terms, 128

Cubane, 330

Curve fitting, 59, 73

Cycloalkanes, 55

Cyclopentadienone, 227

Cyclopentene, 164

Cyclopropane, 316

Cyclopropenone, 226

Cyclopropyl, 211

Debye, 189

Decalin, 290

cis and trans, 290

Define function, 12

Degeneracy, 126

Degenerate, 160

Degree, 37, 68

of freedom, 71

Delocalization energy, 215, 216

Density functional theory, 299, 327, 329

Determinant, 50, 58, 134, 185

Dewar benzene, 326

DFT, 327, 329

Diagonal matrix, 40, 140

Diagonalization, 187
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Diatomic molecule, 286

Differential equation, 94

Diffuse functions, 311
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Dipole moment, 124, 213, 226, 258, 289
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Dissociation, 301

energy, 302, 307

Distribution, 19, 60

function, 19

Division of matrices, 34

Do loop, 6
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DZV, 317, 319
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EHT, 221

Eigenfunction, 39, 170, 253

Eigenvalue, 38, 42, 169, 170, 187, 193, 195, 209,
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Eigenvector, 201, 203, 206, 209, 254

Electrochemical cell, 67

Electron, 267

correlation, 312

spin, 267

Elements of the secular matrix, 232

Ellipse, 43

Empirical model, 97

Energy, 195

corrections (G2), 313
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levels, 195
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of formation, 319, 320

of larger molecules, 289

Enthalpy, 144

of atomization, 89

of formation, 144, 321
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148

of reaction, 147

of reaction at temperatures 6¼ 298 K, 150

Entropy, 24

and heat capacity, 162

Error analysis, 86

vector, 90

Ethylene, 100, 154, 177, 187, 252

ethylene.xyz, 108
Even function, 120

Exact Theoretical Energies, 301

Excel, 25
Exchange, 183

correlation, 328
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gradiaent functional, 328
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symmetry, 266

Expectation value of the energy, 178

Experimental energies, 301

Extended Huckel theory, 219 ff
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Wheland’s method, 219

F operator, 249

False minima, 158

Fermions, 266

Fock

equation, 276

matrix, 279

operator, 277

Force

constant, 94, 114, 132

field, 93, 109

FORTRAN, 101, 103

Fourier series, 119

Free energy and equilibrium, 163

Free valency index, 217

Full CI, 312

Full statistical method, 161

Fulvene, 226

Functional, 328

G2, 307, 313

corrections, 314

G2(MP2), 313, 315

G3, 307, 313

G3(MP2), 313, 315

GAMESS, 317, 318, 324, 325

GAUSSIAN, 240, 243, 244, 299

GAUSSIAN94-W, 292

Gaussian #, 299

Gaussian

approximation, 182, 245

basis sets, 309, 311

distribution, 15

elimination, 47, 48, 54

function, 10

type orbitals, 309
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Gauss-Jordan elimination, 49

Gauss-Seidel iteration, 50, 54

Generalized coordinates, 287

Geo File, 102

Geometry of small molecules, 110

Global minimization, 158

Global MM, 127

GTOs, 309

GUI Interface, 112, 127

h2o.xyz, 110
Hamiltonian, 263, 275, 308

operator 169, 174, 176, 233, 235, 238

radial, 179 ff, 198

Harmonic oscillator, 93, 97 132, 142, 285

Hartree (unit), 293

equation, 263, 265

Hartree Fock equation, 273, 276

limit, 299, 311

Heat capacity, 25, 29, 150

Heat

of formation, 144

of hydrogenation, 154

of hydrogenation of ethene, 154

Helium, 174, 235, 236, 239, 264, 273

Hertz (unit), 94

Hessian

eigenvector, 144

matrix, 140, 142

HF, 284

limit 311

HI, 284

HLC, 314

HMO, 224, 229

spectroscopic transitions, 197

matrix, 194

Hohenberg Kohn theorem, 327

HOMO, 197, 199

Homogeneous simultaneous equations, 185

HOMO-LUMO transitions, 251, 257

Hooke’s law, 94

Huckel, 169 ff

coefficient matrix, 207

matrix, 210

method, 172, 176, 183

molecular orbital theory, 169, 201

theory and the LCAO Approximation,

183

Hybrid DFT, 329

Hydrocarbons, 56

Hydrogen, 281, 282, 308

atom, 171, 243

molecule ion, 171, 304

Hydrogenation, 147

of ethylene, 154

Importance of the least equation, 38

Independent particle approximation, 175

Indistinguishability, 266

Information loss, 60

Intensity, 3

Interactive, 12

Intercept, 65

Internal coordinates, 96

Inverse matrix, 87

Ionization energy, 76, 316

of hydrogen, 76

Ionization potential, 236

first row atoms, 241

Isodesmic Reactions, 324

Isomerization, 147

Iteration, 99

Iterative methods, 1

Jacobi Method, 191

k matrix, 287

Kekule structure, 218

KF, 73, 79

solvation, 73

Kinetic energy operator, 173

Koopman’s theorem, 323

LCAO, 177, 183, 278

Least equation, 37

Least squares, 19, 60 ff

minimization, 61

Linear

combination, 136

of atomic orbitals, 177

curve fitting, 73

functions, 62, 63

not passing through the origin, 63

passing through the origin, 62

independence, 45

nonhomogeneous simultaneous equations, 45

operations, 52

transformation, 41

Linearly dependent equations, 185

LUMO, 197

Lyman series, 76

Machine efficiency, 13

Mass spectra, 54, 55

Mass weighting, 141

Mathcad, 28, 49, 55, 84, 182, 197, 208, 239

346 COMPUTATIONAL CHEMISTRY USING THE PC



Matrix, 31

addition, 31

algebra, 31

as operator, 207

complex, 42

diagonalization, 51

element, 31

formalism for two masses, 138

inversion, 51

inversion and diagonalization, 51

mechanics, 39

multiplication, 33

powers and roots, 35

rank, 38

transformation, 41

Maxwell Boltzmann distribution, 20

Median speed, 21

Medical statistics, 17

Methane, 89

Method of least squares, 60

Methylenecyclopropene, 226

Methylenepentadiene, 225

Minimal, 100, 108

basis, 242

Minimization, 63, 99, 105

parameter, 63

minimize, 150, 154
MM3, 100 ff, 107, 117, 148, 154, 157, 162

parameters, 117 ff

MM4, 147

MMFF94, 112, 127

MNDO, 279

Molality, 78, 79

Molecular energies, 301

mechanics, 93, 98, 131

orbital, 175, 299

speeds, 19

Moment of inertia, 106, 108

MOPAC, 281, 283

MP2, 313

MP4, 313

Multivariate, 45

least squares analysis, 80

Naphthalene, 226, 290, 291

NDDO, 279

Newton-Raphson

generalization, 144

method, 7

Nitrogen, 284

Nodes, 171

Nonhomogeneous vector, 46, 185

Nonsingular matrix, 51

Normal

coordinates, 136, 285, 288

curve, 15

equations, 64, 82

modes, 137

modes of motion, 136

Normalized, 16

Number density, 3

Numerical integration, 9, 24

Odd function, 120

Operator, 173

Optimization, 99, 143, 292, 300, 308

Orbital, 179, 323

approximations, 176, 237, 265

Orthogonal matrix, 40

Orthonormal transform, 206

Orthonormality, 184

Output file, 103

Overdetermined set, 81

Overlap integral, 183, 220

PALA, 91

Parameterization, 113, 280

semiempirical, 281

Parameters, 97, 117, 251

Partial molal volume, 77

of ZnCl2, 77

Partial molar volume, 78, 79

Particle in a box, 170

Partition function, 146

contribution, 146

Pauli principle, 255, 267

PCMODEL, 112, 127, 149, 155, 283

Permutations, 271

Peroxide complexes, 52

Phenantherene, 291

Photoeolectron spectruma, 323

Photon, 2, 3

Pi electron calculations, 155

Planck radiation law, 4

PM3, 279

Polarized functions, 311

Polarographic reduction, 225

Polyatomic molecules, 97, 288

Polynomial, 8, 68

equations, 36

higher degree, 68

POP, 151

Pople, J. A., 306

Population, 14, 215

energy increments, 151

Postmultiplication, 33
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Potassium fluoride, 74

Potential energy, 97, 120,122, 126, 174

function, 123

well, anharmonic, 302

well, harmonic, 302

Powers and roots of matrices, 35

PPP, 248

-SCF, 248, 249, 256

Premultiplication, 33

Primitives, 242, 310

Principal axes, 43

Prismane, 326

Probability density, 23

Propene, 111, 316, 325

Pyridine, 228

QCISD(T), 312

QMOBAS, 194

QSIM, 18

Quadratic functions, 65

Quadrature, 9

Quantum mechanics, 23

number, 171

Radiation density, 3

Rank, 37, 38

Rayleigh frequency, 3

Reduced mass, 95

Regression, 70

Reliability

of fitted parameters, 70

of fitted polynomial parameters, 76

Residual, 69, 86

Resonance, 155

energy, 157, 217

of benzene, 157

integral, 185

Root, 6, 7, 139, 187, 234, 254, 274

Roothaan Hall equations, 278

Rotamers, 128

Rotation matrix, 188, 191

Row operations, 51

Rydberg equation, 76

Sample, 14

Scalar, 33

Scale factor, 306

SCF, 231, 236, 241

ultraviolet spectral peaks, 256

dipole moments, 258

energies of first row atoms and ions, 240

matrix, 252

Schroedinger equation, 169

approximate solutions, 172

exact solutions, 170

Secular determinant, 6, 186, 203, 274

equations, 134, 185, 203

matrix, 7, 186

elements of, 232

Semiempirical, 248, 263

small molecules HF to HI, 284

methods, 248

model, 97

approximations, 279

SHMO, 223, 225

Sigmaplot, 25
Significant figures, 84

Similar matrices, 42, 192

Similarity transformation, 287

Simpson’s rule, 9, 10

Simultaneous analysis, 52

analysis by visible spectroscopy, 83

equations, 51, 64

probabilities, 60

spectrophotometric analysis, 52

Singular matrix, 38, 46

Slater determinant, 255, 269

Slater orbital, 221

Slater-type orbital, 237, 238

Slope, 65

matrix, 83

Solvation, 73

Space, 3

Span, 44

Special matrices, 39

Spectrophotometry, 52

transitions, 197, 253

Spectrum, blackbody, 3

Speed, 19

Spin, 268

correlation, 273

Spinorbital, 255, 268

Spline fit, 27 ff

Split valence basis sets, 310

Spreadsheet, 25

Standard deviation, 14, 72

of the regression, 77

Standard hydrogen electrode, 68

Statement number, 5

Stationary point, 300, 308

Statistical criteria for curve fitting, 69

Statistics, 14

Steric energy, 98 104, 161

STO-1G ‘‘Basis Set’’, 243

STO-2G, 245

STO-3G, 241 247, 300
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Stochastic search, 159, 166

STO-xG, 240, 242

Strain energy, 158

Strainless

bond energies, 145

parameters, 145

Stretching mode, 115

Styrene, 168, 225

Sums in the energy equation, 115

Superpositions, 135

Symmetric matrix, 40

Symmetry, 305

Synchronous mode, 137

System, 13

TableCurve, 24, 69, 70, 71
Taylor

series, 141

expansion, 115

THC, 322

Thermodynamic functions, 319

TINKER, 108 ff, 148

TMOBAS, 194

Tobacco smoke, 291

TORS, 151

Torsion, 118

modes of motion, 153

Total energy (GAMESS), 325

Trace, 40, 221

trans-But-2-ene, 148

Transformation matrix, 41

Transpose, 39

Triangular matrix, 40

Tridiagonal matrix, 40

TrueBASIC, 6, 196

Tryptophan, 88

Two-Mass Problem, 95

Tyrosine, 88

TZV, 317, 319

Uncertainty, 87

Uncoupled equations, 136

Unit matrix, 34

Unitary matrix, 42

Unitary transformation, 42

Upper bound, 309

Upper triangular matrix, 48

Valence bond approximation, 177

van der Waals Energy, 122

Variance, 86

Variational

calculation, 236

method, 178, 181

treatment of the hydrogen atom, 181

VB, 177

Vector, 40

space, 44, 201

Velocity, 19

VESCF, 156

Vibration

of nitrogen, 284

Vibrational spectrum, 301, 302

Virtual orbitals, 256

Wave

function, 22

mechanics, 39

What’s going on here?, 42

Why so much fuss about coupling?, 143

Wien’s law, 4, 6

Zero point energy, 162, 303

ZPE, 303

Z-Score, 18

b, 198, 257
gij, 257
p-electron, 176
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